CBSE Class 11 Maths Chapter 13 Important Questions - Free PDF Download
Free PDF download of Important Questions with solutions for CBSE Class 11 Maths Chapter 13 - Statistics prepared by expert Maths teachers from latest edition of CBSE (NCERT) books. Register online for Maths tuition on Vedantu.com to score more marks in your Examination.
Download CBSE Class 11 Maths Important Questions 2024-25 PDF
Also, check CBSE Class 11 Maths Important Questions for other chapters:
CBSE Class 11 Maths Important Questions | ||
Sl.No | Chapter No | Chapter Name |
1 | Chapter 1 | |
2 | Chapter 2 | |
3 | Chapter 3 | |
4 | Chapter 4 | |
5 | Chapter 5 | |
6 | Chapter 6 | |
7 | Chapter 7 | |
8 | Chapter 8 | |
9 | Chapter 9 | |
10 | Chapter 10 | |
11 | Chapter 11 | |
12 | Chapter 12 | |
13 | Chapter 13 | |
14 | Chapter 14 | |
15 | Chapter 15 | Statistics |
16 | Chapter 16 |
Study Important Questions for Class 11 Mathematics Chapter 13 - Statistics
1 Mark Questions
1.In a test with a maximum marks $ 25 $ , eleven students scored $ 3,\,\,9,\,\,5,\,\,3,\,\,12,\,\,10,\,\,17,\,\,4,\,\,7,\,\,19,\,\,21 $ marks respectively. Calculate the range.
Ans. The marks can be arranged in ascending order as $ 3,3,4,5,7,9,10,12,17,19,21. $
Range $ = $ Maximum value – Minimum value
$ = 21 - 3 $
$ = 18$
Therefore, the range is $ 18. $
2. Coefficient of variation of two distributions is $ 70{\text{ and }}75 $ , and their standard deviations are $ 28{\text{ and }}27 $ respectively what are their arithmetic mean?
Ans. Given that,
Coefficient of variation of first distribution $ {\text{(C}}{\text{.V)}} = {\text{ }}70 $
Coefficient of variation of second distribution $ {\text{(C}}{\text{.V)}} = {\text{ }}75 $
Standard deviation $ = {\sigma _1} = 28$
For first distribution,
${\text{C}}{\text{.V = }}\dfrac{{\sigma 1}}{{\bar x1}} \times 100$
Substitute the values,
$70 = \dfrac{{28}}{{\overline {x1} }} \times 100$
$\bar x = \dfrac{{28}}{{70}} \times 100$
$\bar x = 40$
Similarly for second distribution,
${\text{C}}{\text{.V = }}\dfrac{{{\sigma _2}}}{{{x_2}}} \times 100$
Substitute the values,
$75 = \dfrac{{27}}{{{x_2}}} \times 100$
${\bar x_2} = \dfrac{{27}}{{75}} \times 100$
${\bar x_2} = 36$
Therefore, the arithmetic mean of the first and second distributions are $ 40{\text{ and }}36 $ respectively.
3. Write the formula for mean deviation.
Ans. The formula for mean deviation is $(\bar x) = \dfrac{{\sum {{f_i}} \left| {{x_i} - \bar x} \right|}}{{\sum {{f_i}} }} = \dfrac{1}{x}\Sigma {f_i}\left| {{x_i} - \bar x} \right|$.
4. Write the formula for variance.
Ans. The formula for variance is ${\sigma ^2} = \dfrac{1}{n}\Sigma {f_i}{\left( {{x_i} - \bar x} \right)^2}$
5. Find the median for the following data.
${x_i}:5,7,9,10,12,15$
${f_i}:8,6,2,2,2,6$
Ans.
$ {x_i} $ | $ 5 $ | $ 7 $ | $ 9 $ | $ 10 $ | $ 12 $ | $ 15 $ |
$ {f_i} $ | $ 8 $ | $ 6 $ | $ 2 $ | $ 2 $ | $ 2 $ | $ 6 $ |
$ c \cdot f $ | $ 8 $ | $ 14 $ | $ 16 $ | $ 18 $ | $ 20 $ | $ 26 $ |
$n = 26$. Median is the average of ${13^{{\text{th }}}}$ and ${14^{{\text{th }}}}$ item, both of which lie in the $ c.f{\text{ }}14 $ .
$\therefore {x_i} = 7$
Thus, Median $ = \dfrac{{13{\text{ observation }} + 14{\text{ th observation }}}}{2}$
$ = \dfrac{{7 + 7}}{2}$
$ = 7$
Therefore, the median is $7$.
6. Write the formula of mean deviation about the median
Ans. The formula of mean deviation about the median is,$MD \cdot (M) = \dfrac{{\sum {{f_i}} \left| {{x_i}M} \right|}}{{\sum {{f_i}} }} = \dfrac{1}{n}\sum {{f_i}} \left| {{x_i} - M} \right|$
7. Find the range of the following series $ 6,7,10,12,13,4,8,12 $
Ans. Range $ = $ Maximum value – Minimum value
$ = 113 - 4$
$ = 9$
Therefore, the range of the given series is $9$.
8. Find the mean of the following data $ 3,6,11,12,18 $
Ans. Mean $ = \dfrac{{{\text{ Sum of observation }}}}{{{\text{ Total no of observation }}}}$
$ = \dfrac{{50}}{5}$
$ = 10$
Therefore, the mean of given data $10$.
9. Express in the form of $a + ib,\,\,(3i - 7) + (7 - 4i) - (6 + 3i) + {i^{23}}$
Ans. Let ${\text{Z}} = 3i - 7 + 7 - 4i - 6 - 3i + {\left( {{i^4}} \right)^5}.\,{i^3}$
$=-4i-6-i$ $\because [{{i}^{4}}=1 \,\,\,\,\, {{i}^{3}}=-i] $
$ = - 5i - 6$
$ = - 6 + ( - 5i)$
10. Find the conjugate of $\sqrt { - 3} + 4{i^2}$
Ans. Let $z = \sqrt { - 3} + 4{i^2}$
$ = \sqrt 3 i - 4$
$\bar z = - \sqrt 3 i - 4$
11. Solve for ${\text{x}}$ and $y,\,\,3x + (2x - y)i = 6 - 3i$
Ans. $3x = 6$
$x = 2$
$2x - y = - 3$
Substitute the values,
$2 \times 2 - y = - 3$
$ - y = - 3 - 4$
$y = 7$
12. Find the value of $1 + {i^2} + {i^4} + {i^6} + {i^8} + \ldots + {i^{20}}$
Ans. $1 + {i^2} + {\left( {{i^2}} \right)^2} + {\left( {{i^2}} \right)^3} + {\left( {{i^2}} \right)^4} + - - - - + {\left( {{i^2}} \right)^{10}} = 1\left[ {\because {i^2} = - 1} \right.$
13. Multiply $3 - 2i$ by its conjugate.
Ans. Let $z = 3 - 2i$
The conjugate is,
$\bar z = 3 + 2i$
$z\bar z = (3 - 2i)(3 + 2i)$
$ = 9 + 6i - 6i - 4{{\text{i}}^2}$
$ = 9 - 4( - 1)$
$ = 13$
14. Find the multiplicative inverse $4 - 3i$.
Ans. Let $z = 4 - 3i$
Then, $\bar z = 4 + 3i$
$|z| = \sqrt {16 + 9} = 5$
${z^{ - 1}} = \dfrac{{\bar z}}{{|z{|^2}}}$
$ = \dfrac{{4 + 3i}}{{25}}$
$ = \dfrac{4}{{25}} + \dfrac{3}{{25}}i$
Therefore, the multiplicative inverse $4 - 3i$ is $\dfrac{4}{{25}} + \dfrac{3}{{25}}i$.
15. Express in term of $a + ib,\,\,\dfrac{{(3 + i\sqrt 5 )(3 - i\sqrt 5 )}}{{(\sqrt 3 + \sqrt 2 i) - (\sqrt 3 - i\sqrt 2 )}}$
Ans. $\dfrac{{(3 + i\sqrt 5 )(3 - i\sqrt 5 )}}{{(\sqrt 3 + \sqrt 2 i) - (\sqrt 3 - i\sqrt 2 )}} = \dfrac{{{{(3)}^2} - {{(i\sqrt 5 )}^2}}}{{\sqrt 8 + \sqrt 2 i - \sqrt 8 + i\sqrt 2 }}$
$ = \dfrac{{9 + 5}}{{2\sqrt 2 i}}$
$ = \dfrac{{14}}{{2\sqrt 2 i}}$
$ = \dfrac{7}{{\sqrt 2 i}}$
$ = \dfrac{7}{{\sqrt 2 i}} \times \dfrac{{\sqrt 2 i}}{{\sqrt 2 i}}$
$ = \dfrac{{7\sqrt 2 i}}{{ - 2}}$
16. Evaluate ${i^n} + {i^{n + 1}} + {i^{n + 2}} + {i^{n + 3}}$
Ans. ${i^n} + {i^n} \cdot {i^1} + {i^n} \cdot {i^2} + {i^n} \cdot {i^3}$
$={{i}^{n}}+{{i}^{n}}\cdot i-{{i}^{n}}+{{i}^{n}}\cdot (-i) $ $ \because [{i^{3} = -i} \,\,\,\ {i^{2}=-1} ]$
$ = 0$
17. If $1,w,{w^2}$ are three cube root of unity, show that $\left( {1 - w + {w^2}} \right)\left( {1 + w - {w^2}} \right) = 4$
Ans. $\left( {1 - w + {w^2}} \right)\left( {1 + w - {w^2}} \right)$
$\left( {1 + {w^2} - w} \right)\left( {1 + w - {w^2}} \right)$
$=(-w-w)\left( -{{w}^{2}}-{{w}^{2}} \right)$ $\because [{1+w=-{w^{2}}} \,\,\,\,\ {1+{w^{2}}= -w}]$
$( - 2w)\left( { - 2{w^2}} \right)$
$4{w^3}\left[ {{w^3} = 1} \right]$
$4 \times 1$
$ = 4$
Hence, If $1,w,{w^2}$ are three cube root of unity, then $\left( {1 - w + {w^2}} \right)\left( {1 + w - {w^2}} \right) = 4$
18. Find that sum product of the complex number $ - \sqrt 3 + \sqrt { - 2} $ and $2\sqrt 3 - i$
Ans. ${z_1} + {z_2} = - \sqrt 3 + \sqrt 2 i + 2\sqrt 3 - i$
$ = \sqrt 3 + (\sqrt 2 - 1)i$
${z_1}{z_2} = ( - \sqrt 3 + \sqrt 2 i)(2\sqrt 3 - i)$
$ = - 6 + \sqrt 3 i + 2\sqrt 6 i - \sqrt 2 {i^2}$
$ = - 6 + \sqrt 3 i + 2\sqrt 6 i + \sqrt 2 $
$ = ( - 6 + \sqrt 2 ) + (\sqrt 3 + 2\sqrt 6 )i$
19. Write the real and imaginary part $1 - 2{{\mathbf{i}}^2}$
Ans. Let ${\text{z}} = 1 - 2{{\text{i}}^2}$
$ = 1 - 2( - 1)$
$ = 1 + 2$
$ = 3$
$ = 3 + 0.i$
The real part is $\operatorname{Re} (z) = 3$,
The imaginary part is $\operatorname{Im} (z) = 0$.
20. If two complex number ${z_1},\,\,{z_2}$ are such that $\left| {{z_1}} \right| = \left| {{z_2}} \right|$, is it then necessary that ${z_{\text{1}}}{\text{ = }}\,{z_{\text{2}}}$
Ans. Let ${z_1} = a + ib$
$\left| {{z_1}} \right| = \sqrt {{a^2} + {b^2}} $
${z_2} = b + ia$
$\left| {{z_2}} \right| = \sqrt {{b^2} + {a^2}} $
Therefore, $\left| {{z_1}} \right| = \left| {{z_2}} \right|$ but ${z_1} \ne {z_2}$
21. Find the conjugate and modulus of $\overline {9 - i} + \overline {6 + {i^3}} - \overline {9 + {i^2}} $
Ans. Let $z = \overline {9 - i} + \overline {6 - i} - \overline {9 - 1} $
$ = 9 + i + 6 + i - 0$
$ = 5 + 2i$
$\bar z = 5 - 2i$
$|z| = \sqrt {{{(5)}^2} + {{( - 2)}^2}} $
$ = \sqrt {25 + 4} $
$ = \sqrt {29} $
The conjugate of $\overline {9 - i} + \overline {6 + {i^3}} - \overline {9 + {i^2}} $ is $5 - 2i$.
The modulus of $\overline {9 - i} + \overline {6 + {i^3}} - \overline {9 + {i^2}} $ is $\sqrt {29} $.
22. Find the number of non zero integral solution of the equation $|1 - i{|^x} = {2^x}$
Ans. $|1 - i{|^x} = {2^x}$
${\left( {\sqrt {{{(1)}^2} + {{( - 1)}^2}} } \right)^x} = {2^x}$
${(\sqrt 2 )^x} = {2^x}$
${(2)^{\dfrac{1}{2}x}} = {2^x}$
$\dfrac{1}{2}x = x$
$\dfrac{1}{2} = 1$
$1 = 2$, Which is false no value of $x$ satisfies.
23. If $(a + ib)(c + id)(e + if)(g + ih) = A + iB$ then show that
$\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)\left( {{e^2} + {f^2}} \right)\left( {{g^2} + {h^2}} \right) = {A^2} + {B^2}$
Ans. Given that, $(a + ib)(c + id)(e + if)(g + ih) = A + iB$
$ \Rightarrow |(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|$
$\left( {\sqrt {{a^2} + {b^2}} } \right)\left( {\sqrt {{c^2} + {d^2}} } \right)\left( {\sqrt {{e^2} + {f^2}} } \right)\left( {\sqrt {{g^2} + {h^2}} } \right) = \sqrt {{A^2} + {B^2}} $
Square both side,
$\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)\left( {{e^2} + {f^2}} \right)\left( {{g^2} + {h^2}} \right) = {A^2} + {B^2}$
Hence, If $(a + ib)(c + id)(e + if)(g + ih) = A + iB$ then,
$\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)\left( {{e^2} + {f^2}} \right)\left( {{g^2} + {h^2}} \right) = {A^2} + {B^2}$
4 Mark Questions
1. The mean of $ 2,7,4,6,8 $ and $p$ is 7 . Find the mean deviation about the median of the
observations.
Ans. Observations are $ 2,7,4,6,8 $ and $p$ which are $ 6 $ in numbers
$\therefore n = 6$
The near of these observations is $ 7 $
That is, $\dfrac{{2 + 7 + 4 + 6 + 8 + p}}{6} = 7$
$ \Rightarrow 27 + p = 42$
$ \Rightarrow p = 15$
Arrange the observations in ascending order $ 2,4,6,7,8,15 $
Median $({\text{M}}) = \dfrac{{\dfrac{n}{2}{\text{ th observation }} + \left( {\dfrac{n}{2} + 1} \right){\text{ th observation }}}}{2}$
$ = \dfrac{{{\text{ 3rd observation }} + 4{\text{ th observation }}}}{2}$
$ = \dfrac{{6 + 7}}{2}$
$ = \dfrac{{13}}{2}$
$ = 6.5$
Calculation of mean deviation about Median:
$ {x_i} $ | $ {x_i} - M $ | $ \left| {{x_i} - M} \right| $ |
$ 2 $ | $ - 4.5 $ | $ 4.5 $ |
$ 4 $ | $ - 2.5 $ | $ 2.5 $ |
$ 6 $ | $ - 0.5 $ | $ 0.5 $ |
$ 7 $ | $ 0.5 $ | $ 0.5 $ |
$ 8 $ | $ 1.5 $ | $ 1.5 $ |
$ 15 $ | $ 8.5 $ | $ 8.5 $ |
$ {\text{Total}} $ | $ 18 $ |
Mean deviation about median $ = \dfrac{{18}}{6} = 3$.
2. Find the mean deviation about the mean for the following data!
${x_i}:10,30,50,70,90$
${f_i}:4,24,28,16,8$
Ans. To calculate mean, we require ${f_i}xi$ values then for mean deviation, it require
$\mid xi - \bar x\mid $ values and ${f_i}|xi - \bar x|$ values.
$n = \sum {{f_i}} = 80\quad $
$\sigma d\sum {{f_i}} xi = 4000$
$\bar x = \dfrac{{\sum {{f_i}} xi}}{n} = \dfrac{{4000}}{{80}} = 50$
Mean deviation about the mean is,
$\operatorname{MD} (\bar x) = \dfrac{{\sum {{f_i}} |xi - \bar x|}}{n} = \dfrac{{1280}}{{80}} = 16$
3. Find the mean, standard deviation and variance of the first $n$ natural numbers.
Ans. The numbers are $1,2,3, \ldots \ldots ,n$
Mean is,
$\bar x = \dfrac{{\sum n }}{n} = \dfrac{{n(n + 1)}}{{\dfrac{2}{n}}} = \dfrac{{n + 1}}{2}$
Variance is,
$\sigma 2 = \dfrac{{\sum x {i^2}}}{n} - \bar x$
Substitute the values,
$ = \dfrac{{\sum {{n^2}} }}{n} - {\left( {\dfrac{{n + 1}}{2}} \right)^2}$
$ = \dfrac{{n(n + 1)(2n + 1)}}{{6n}} - \dfrac{{{{(n + 1)}^2}}}{4}$
$ = (n + 1)\left[ {\dfrac{{2n + 1}}{6} - \dfrac{{n + 1}}{4}} \right]$
$ = (n + 1)\left( {\dfrac{{n - 1}}{{12}}} \right) = \dfrac{{{n^2} - 1}}{{12}}$
Thus, Standard deviation $\sigma = \dfrac{{\sqrt {{n^2} - 1} }}{{12}}$
4. Find the mean variance and standard deviation for following data
$ {x_i} $ | $ 4 $ | $ 8 $ | $ 11 $ | $ 17 $ | $ 20 $ | $ 24 $ | $ 32 $ |
$ {f_i} $ | $ 3 $ | $ 5 $ | $ 9 $ | $ 5 $ | $ 4 $ | $ 3 $ | $ 1 $ |
Ans.
$ {x_i} $ | $ {f_i} $ | $ {f_i}{x_i} $ | $ {x_i} - \bar x $ | $ {\left( {{x_i} - \bar x} \right)^2} $ | $ {f_i}{x_i}\left| {{x_i} - \bar x} \right| $ |
$ 4 $ | $ 3 $ | $ 12 $ | $ - 10 $ | $ 100 $ | $ 300 $ |
$ 8 $ | $ 5 $ | $ 40 $ | $ - 6 $ | $ 36 $ | $ 180 $ |
$ 11 $ | $ 9 $ | $ 99 $ | $ - 3 $ | $ 9 $ | $ 81 $ |
$ 17 $ | $ 5 $ | $ 85 $ | $ 3 $ | $ 9 $ | $ 45 $ |
$ 20 $ | $ 4 $ | $ 80 $ | $ 6 $ | $ 36 $ | $ 144 $ |
$ 24 $ | $ 3 $ | $ 72 $ | $ 10 $ | $ 100 $ | $ 300 $ |
$ 32 $ | $ 1 $ | $ 32 $ | $ 18 $ | $ 324 $ | $ 324 $ |
$ {\text{Total}} $ | $ 30 $ | $ 402 $ | $ 1374 $ |
Here, $n = \sum {{f_i}} = 30$
$\sum {{f_i}} {x_i} = 420$
Mean $\bar x = \dfrac{{\sum {{f_i}} {x_i}}}{n}$
$ = \dfrac{{420}}{{30}}$
$ = 14$
Variance ${\sigma ^2} = \dfrac{1}{n}\sum {{f_i}} {\left( {{x_i} - \bar x} \right)^2}$
$ = \dfrac{1}{{30}} \times 1374$
$ = 45.8$
Standard deviation $\sigma = \sqrt {45.8} $
$ = 6.77$
5. The mean and standard deviation of $ 6 $ observations are $ 8 $ and $ 4 $ respectively. If each observation is multiplied by $ 3 $ , find the new mean and new standard deviation of
the resulting observations.
Ans. Let ${x_i},{x_2} \ldots \ldots {x_6}$ be the six given observations
Then, $\bar x = 8$ and $\sigma = 4$
$\bar x = \dfrac{{\sum {{x_i}} }}{n} = 8 = \dfrac{{{x_1} + {x_2} + \ldots \ldots + {x_6}}}{6}$
${x_1} + {x_2} + \ldots \ldots {x_6} = 48$
Also ${\sigma ^2} = \dfrac{{\sum {x_1^2} }}{n} - {(\bar x)^2}$
Substitute the values,
$ = {4^2} = \dfrac{{x_1^2 + x_2^2 \ldots \ldots + x_6^2}}{6} - {(8)^2}$
$ = x_1^2 + x_2^2 + \ldots \ldots x_6^2$
$ = 6 \times (16 + 64) = 480$
As each observation is multiplied by $ 3 $ , new observations are,
$3{x_1},3{x_2}, \ldots \ldots 3{x_6}$
Then, $\bar X = \dfrac{{3{x_1} + 3{x_2} + \ldots .3{x_6}}}{6}$
$ = \dfrac{{3\left( {{x_1} + {x_2} + \ldots .{x_6}} \right)}}{6}$
$ = \dfrac{{3 \times 48}}{6}$
$ = 24$
Let ${\sigma _1}$ be the new standard deviation, then
$\sigma _1^2 = \dfrac{{{{\left( {3{x_1}} \right)}^2} + {{\left( {3{x_2}} \right)}^2} + \ldots .. + {{\left( {3{x_6}} \right)}^2}}}{6} - {(\bar X)^2}$
$ = \dfrac{{9\left( {x_1^2 + x_2^2 + \ldots .x_6^2} \right)}}{6} - {(24)^2}$
$ = \dfrac{{9 \times 480}}{6} - 576$
$ = 720 - 576$
$ = 144$
${\sigma _1} = 12$
6. Prove that the standard deviation is independent of any change of origin, but is dependent on the change of scale.
Ans. Use the transformation $u = ax + b$ to change the scale and origin
Now $u = ax + b$
$ = \sum u = \Sigma (ax + b) = a\sum x + b.n$
Also $\sigma {u^2} = \dfrac{{\sum {{{(u - \bar u)}^2}} }}{n}$
$ = \dfrac{{\sum {{{(ax + b - a\bar x - b)}^2}} }}{n}$
$ = \dfrac{{\sum {{a^2}} {{(x - \bar x)}^2}}}{n}$
$ = \dfrac{{{a^2}\Sigma {{(x - \bar x)}^2}}}{n}$
$ = {a^2}\sigma {x^2}$
${\sigma ^2}u = a2{\sigma ^2}u$
$ = \sigma u = \mid a\mid \sigma x$
Both $\sigma u,\,\,\sigma x$ are positive which shows that standard deviation is independent of choice of origin, but depends on the scale.
7. Calculate the mean deviation about the mean for the following data:
Expenditure $ 0 - 100,100 - 200,200 - 300,300 - 400,400 - 500,500 - 600,600 - 700,700 - 800 $ Persons $ 4,8,9,10,7,5,4,3 $
Ans.
Expenditure | No.of persons $ {f_i} $ | Mid point $ {x_i} $ | $ {f_i}{x_i} $ | $ \left| {{x_i} - \bar x} \right| $ | $ {f_i}{x_i}\left| {{x_i} - \bar x} \right| $ |
$ 0 - 100 $ | $ 4 $ | $ 50 $ | $ 200 $ | $ 308 $ | $ 1232 $ |
$ 100 - 200 $ | $ 8 $ | $ 150 $ | $ 1200 $ | $ 208 $ | $ 1664 $ |
$ 200 - 300 $ | $ 9 $ | $ 250 $ | $ 2250 $ | $ 108 $ | $ 972 $ |
$ 300 - 400 $ | $ 10 $ | $ 350 $ | $ 3500 $ | $ 8 $ | $ 80 $ |
$ 400 - 500 $ | $ 7 $ | $ 450 $ | $ 3150 $ | $ 92 $ | $ 644 $ |
$ 500 - 600 $ | $ 5 $ | $ 550 $ | $ 2750 $ | $ 192 $ | $ 960 $ |
$ 600 - 700 $ | $ 4 $ | $ 650 $ | $ 2600 $ | $ 292 $ | $ 1168 $ |
$ 700 - 800 $ | $ 3 $ | $ 750 $ | $ 2250 $ | $ 392 $ | $ 1176 $ |
$ 50 $ | $ 17900 $ | $ 7896 $ |
$n = \Sigma {f_i} = 50$
$\sum {{f_i}} {x_i} = 17900$
$\therefore $Mean $ = \dfrac{1}{n}\sum {{f_i}} {x_i}$
$ = \dfrac{{17900}}{{50}}$
$ = 358$
$MD(\bar x) = \dfrac{1}{n}\sum f \left| {{x_i} - \bar x} \right|$
$ = \dfrac{{7896}}{{50}}$
$ = 157.92$
8.Find the mean deviation about the median for the following data:
Marks $ 0 - 10,10 - 20,20 - 30,30 - 40,40 - 50,50 - 60 $ No.of boys $ 8,10,10,16,4,2 $
Ans.
Marks | No.of boys $ {f_i} $ | Cumulative Frequency | Mid points $ {x_i} $ | $ \left| {{x_i} - M} \right| $ | $ {f_i}\left| {{x_i} - M} \right| $ |
$ 0 - 10 $ | $ 8 $ | $ 8 $ | $ 5 $ | $ 22 $ | $ 176 $ |
$ 10 - 20 $ | $ 10 $ | $ 18 $ | $ 15 $ | $ 12 $ | $ 120 $ |
$ 20 - 30 $ | $ 10 $ | $ 28 $ | $ 25 $ | $ 2 $ | $ 20 $ |
$ 30 - 40 $ | $ 16 $ | $ 44 $ | $ 35 $ | $ 8 $ | $ 128 $ |
$ 40 - 50 $ | $ 4 $ | $ 48 $ | $ 45 $ | $ 18 $ | $ 72 $ |
$ 50 - 60 $ | $ 2 $ | $ 50 $ | $ 55 $ | $ 28 $ | $ 56 $ |
$ {\text{Total}} $ | $ 50 $ | $ 572 $ |
${\left( {\dfrac{n}{2}} \right)^{th}}$or ${25^{{\text{th }}}}$ item $ = 20 - 30$, which is the median class.
Median $ = l + \dfrac{{\dfrac{n}{2} - c}}{f} \times c$
$ = 20 + \dfrac{{25 - 18}}{{10}} \times 10$
$ = 27$
$MD(M) = \dfrac{1}{n}\Sigma {f_i}\left| {{x_i} - M} \right|$
$ = \dfrac{{572}}{{50}}$
$ = 11.44$
9. An analysis of monthly wages points to workers in two firms $ {\text{A and B}} $ , belonging to the same industry, given the following result. Find mean deviation about median.
Firm $ {\text{A}} $ , Firm $ {\text{B}} $
No of wages earns 586, 648
Average monthly wages $ {\text{Rs 5253, Rs 5253}} $
Ans. For firm $ {\text{A}} $ , number of workers $ = 586$
Average monthly wage is $ {\text{Rs 5253}} $
Total wages $ = \operatorname{Rs} 5253 \times 586$
$ = \operatorname{Rs} 3078258$
For firm $ {\text{B}} $ , total wages $ = {\text{Rs}}\,\,253 \times 648$
$ = \operatorname{Rs} 3403944$
Therefore, the firm $ {\text{B}} $ pays out an amount of monthly wages.
10. Find the mean deviation about the median of the following frequency distribution -
Class $ 0 - 6,6 - 12,12 - 18,18 - 24,24 - 30 $
Frequency $ 8,10,12,9,5 $
Ans.
Class | Mid value $ {x_i} $ | Frequency $ {f_i} $ | $ c.f $ | $ \left| {{x_i} - 14} \right| $ | $ {f_i}\left| {{x_i} - 14} \right| $ |
$ 0 - 6 $ | $ 3 $ | $ 8 $ | $ 8 $ | $ 11 $ | $ 88 $ |
$ 6 - 12 $ | $ 9 $ | $ 10 $ | $ 18 $ | $ 5 $ | $ 50 $ |
$ 12 - 18 $ | $ 15 $ | $ 12 $ | $ 30 $ | $ 1 $ | $ 12 $ |
$ 18 - 24 $ | $ 21 $ | $ 9 $ | $ 39 $ | $ 7 $ | $ 63 $ |
$ 21 - 30 $ | $ 27 $ | $ 5 $ | $ 44 $ | $ 13 $ | $ 65 $ |
$ N = \sum {{f_i}} = 44 $ | $ \sum {{f_i}} \left| {{x_i} - 14} \right| = 278 $ |
$N = 44 = \dfrac{N}{2}$
$ 12 - 18 $ is the median class
Median $ = l + \dfrac{{\dfrac{N}{2} - F}}{f} \times h$
Here $h = 6,\,\,l = 12,\,\,f = 12,\,\,F = 18$
Median is,
$ = 12 + \dfrac{{22 - 18}}{{12}} \times 6$
$ = 12 + \dfrac{{4 \times 6}}{{12}}$
$ = 14$
Mean deviation about median $ = \dfrac{1}{N}\sum {{f_i}} \left| {{x_i} - 14} \right|$
$ = \dfrac{{278}}{{74}}$
$ = 6.318$
11. Calculate the mean deviation from the median from the following data:
Salary per week(in Rs) $ 10 - 20,20 - 30,30 - 40,40 - 50,50 - 60,60 - 70,70 - 80 $
No. of workers $ 4,6,10,20,10,6,4 $
Ans.
Salary per week | Mid value $ {x_i} $ | Frequency $ {f_i} $ | $ c.f $ | $ \left| {{d_i}} \right| = {x_i} - 45 $ | $ {f_i}\left| {{d_i}} \right| $ |
$ 10 - 20 $ | $ 15 $ | $ 4 $ | $ 4 $ | $ 30 $ | $ 120 $ |
$ 20 - 30 $ | $ 25 $ | $ 6 $ | $ 10 $ | $ 20 $ | $ 120 $ |
$ 30 - 40 $ | $ 35 $ | $ 10 $ | $ 20 $ | $ 10 $ | $ 100 $ |
$ 40 - 50 $ | $ 45 $ | $ 20 $ | $ 40 $ | $ 0 $ | $ 0 $ |
$ 50 - 60 $ | $ 55 $ | $ 10 $ | $ 50 $ | $ 10 $ | $ 100 $ |
$ 60 - 70 $ | $ 65 $ | $ 6 $ | $ 56 $ | $ 20 $ | $ 120 $ |
$ 70 - 80 $ | $ 75 $ | $ 4 $ | $ 60 $ | $ 30 $ | $ 120 $ |
$ N = \sum {{f_i}} = 60 $ | $ \sum {{f_i}\left| {{d_i}} \right|} = 680 $ |
$N = 60$
$\Rightarrow \dfrac{N}{2} = 30$
$ 40 - 50 $ is the median class
Here $l = 40,\,\,f = 20,\,\,h = 10,\,\,F = 20$
Median $ = \dfrac{{l - \dfrac{N}{2} - F}}{f} \times h$
$= \dfrac{{40 + 30 - 20}}{{20}} \times 10 $
$= 45$
Mean deviation $ = \dfrac{{\sum {{f_i}} \left| {{d_i}} \right|}}{N}$
$ = \dfrac{{680}}{{60}}$
$ = 11.33$
12. Let ${x_1},{x_2} \ldots \ldots {x_n}$ values of a variable ${\text{Y}}$ and let 'a' be a non zero real number. Then prove that the variance of the observations $a{y_1},a{y_2} \ldots \ldots a{y_n}$ is ${a^2}\operatorname{var} (Y)$. Also, find their standard deviation.
Ans. Let ${v_1},{v_2} \ldots \ldots {v_n}$ be the value of variables $v$ such that ${v_1} = a{y_i},1,2 \ldots \ldots n$, then
$\bar V = \dfrac{1}{n}\sum\limits_{i = 1}^n {{v_i}} = \dfrac{1}{n}\sum\limits_{i = 1}^n {(a{y_i})} = a\left( {\dfrac{1}{n}\sum\limits_{i = 1}^n {{y_i}} } \right) = a\bar y$
${v_i} - \bar V = a{y_i} - a\bar y$
${v_i} - \bar V = a\left( {{y_i} - \bar Y} \right)$
${\left( {{v_i} - \bar V} \right)^2} = {a^2}{\left( {{y_i} - \bar Y} \right)^2}$
$\sum\limits_{i = 1}^n {{{\left( {{v_i} - \bar V} \right)}^2}} = {a^2}\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} - \bar Y} \right)}^2}} $
${\text{Var}}(V) = {a^2}\operatorname{Var} (Y)$
${\sigma _u} = \sqrt {\operatorname{var} (v)} = \sqrt {{a^2}\operatorname{var} (Y)} = a\mid \sqrt {\operatorname{var} (Y)} $
$ = |a|{\sigma _y}$
13. If $a + ib = \dfrac{{{{(x + i)}^2}}}{{2{x^2} + 1}}$ Prove that ${a^2} + {b^2} = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}}}{{{{\left( {2{x^2} + 1} \right)}^2}}}$
Ans.Given that, $a + ib = \dfrac{{{{(x + i)}^2}}}{{2{x^2} + 1}}$
Take conjugate both side,
$a - ib = \dfrac{{{{(x - i)}^2}}}{{2{x^2} + 1}}$
$(a + ib)(a - ib) = \left( {\dfrac{{{{(x + i)}^2}}}{{2{x^2} + 1}}} \right) \times \left( {\dfrac{{{{(x - i)}^2}}}{{2{x^2} + 1}}} \right)$
${(a)^2} - {(ib)^2} = \dfrac{{{{\left( {{x^2} - {i^2}} \right)}^2}}}{{{{\left( {2{x^2} + 1} \right)}^2}}}$
${a^2} + {b^2} = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}}}{{{{\left( {2{x^2} + 1} \right)}^2}}}$
14. If ${(x + iy)^3} = u + iv$ then show that $\dfrac{u}{x} + \dfrac{v}{y} = 4\left( {{x^2} - {y^2}} \right)$
Ans. ${(x + iy)^3} = u + iv$
${x^3} + {(iy)^3} + 3{x^2}(iy) + 3 \cdot x{(iy)^2} = u + iv$
${x^3} - i{y^3} + 3{x^2}yi - 3x{y^2} = u + iv$
${x^3} - 3x{y^2} + \left( {3{x^2}y - {y^3}} \right)i = u + iv$
$x\left( {{x^2} - 3{y^2}} \right) + y\left( {3{x^2} - {y^2}} \right)i = u + iv$
$x\left( {{x^2} - 3{y^2}} \right) = u,y\left( {3{x^2} - {y^2}} \right) = v$
${x^2} - 3{y^2} = \dfrac{u}{x}$ $\mid 3{x^2} - {y^2} = \dfrac{v}{y}$
$4{x^2} - 4{y^2} = \dfrac{u}{x} + \dfrac{v}{y}$
$4\left( {{x^2} - {y^2}} \right) = \dfrac{u}{x} + \dfrac{v}{y}$
Hence proved.
15. Solve $\sqrt 3 {x^2} - \sqrt 2 x + 3\sqrt 3 = 0$
Ans.Given that, $\sqrt 3 {x^2} - \sqrt 2 x + 3\sqrt 3 = 0$
Here, $a = \sqrt 3 ,\,\,b = - \sqrt 2 ,\,\,c = 3\sqrt 3 $
$D = {b^2} - 4ac$
Substitute the values,
$ = {( - \sqrt 2 )^2} - 4 \times \sqrt 3 (3\sqrt 3 )$
$ = 2 - 36$
$ = - 34$
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$
Substitute the values,
$ = \dfrac{{ - ( - \sqrt 2 ) \pm \sqrt { - 34} }}{{2 \times \sqrt 3 }}$
$ = \dfrac{{\sqrt 2 \pm \sqrt {34} {\text{i}}}}{{2\sqrt 3 }}$
16. Find the modulus ${i^{25}} + {(1 + 3i)^3}$
Ans.Given, ${i^{25}} + {(1 + 3{\text{i}})^3}$
$ = {\left( {{i^4}} \right)^6} \cdot i + 1 + 27{i^3} + 3(1)(3i)(1 + 3i)$
$ = i + \left( {1 - 27i + 9i + 27{i^2}} \right)$
$ = i + 1 - 18i - 27$
$ = - 26 - 17i$
$\left| {{i^{25}} + {{(1 + 3i)}^3}} \right| = | - 26 - 17i|$
$ = \sqrt {{{( - 26)}^2} + {{( - 17)}^2}} $
$ = \sqrt {{{( - 26)}^2} + {{( - 17)}^2}} $
$ = \sqrt {676 + 289} $
$ = \sqrt {965} $
17. If $a + ib = \dfrac{{{{(x + i)}^2}}}{{2x - i}}$ prove that ${a^2} + {b^2} = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}}}{{4{x^2} + 1}}$
Ans. Given that, $a + ib = \dfrac{{{{(x + i)}^2}}}{{2x - i}}$
The conjugate is, $a - ib = \dfrac{{{{(x - i)}^2}}}{{2x + i}}$
Take conjugate both side,
$(a + ib)(a - ib) = \dfrac{{{{(x + i)}^2}}}{{(2x - i)}} \times \dfrac{{{{(x - i)}^2}}}{{(2x + i)}}$
$ \Rightarrow {a^2} + {b^2} = \dfrac{{{{\left( {{x^2} + 1} \right)}^2}}}{{4{x^2} + 1}}$
18. Evaluate ${\left[ {{i^{18}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right]^3}$
Ans.Given that, ${\left[ {{i^{18}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right]^3}$
$ \Rightarrow {\left[ {{{\left( {{i^4}} \right)}^4} \cdot {i^2} + \dfrac{1}{{{i^{25}}}}} \right]^3}$
$ \Rightarrow {\left[ {{i^2} + \dfrac{1}{{{{\left( {{i^4}} \right)}^6}.i}}} \right]^{ - 3}}$
$ \Rightarrow {\left[ { - 1 + \dfrac{1}{i}} \right]^3}$
$ \Rightarrow {\left[ { - 1 + \dfrac{{{i^3}}}{{{i^4}}}} \right]^3}$
$ \Rightarrow {[ - 1 - i]^3} = - {(1 + i)^3}$
$ = - \left[ {{1^3} + {i^3} + 3.1i(1 + i)} \right]$
$ = - \left[ {1 - i + 3i + 3{i^2}} \right]$
$ = - [1 - i + 3i - 3]$
$ = - [ - 2 + 2i] = 2 - 2i$
19. Find that modulus and argument $\dfrac{{1 + i}}{{1 - i}}$
Ans. $\dfrac{{1 + i}}{{1 - i}} = \dfrac{{1 + i}}{{1 - i}} \times \dfrac{{1 + i}}{{1 + i}}$
$ = \dfrac{{{{(1 + i)}^2}}}{{{1^2} - {i^2}}}$
$ = \dfrac{{1 + {i^2} + 2i}}{{1 + 1}}$
$ = \dfrac{{2i}}{2}$
$ = i$
$z = 0 + i$
$r = |z| = \sqrt {{{(0)}^2} + {{(1)}^2}} = 1$
Let $\alpha $ be the acute $\angle {\text{s}}$
$\tan \alpha = \left| {\dfrac{1}{0}} \right|$
$\alpha = \pi /2$
$\arg (z) = \pi /2$
$r = 1$
20. For what real value of $x$ and $y$ are numbers equal $(1 + i){y^2} + (6 + i)$ and $(2 + i)x$
Ans. $(1 + i){y^2} + (6 + i) = (2 + i)x$
${y^2} + i{y^2} + 6 + i = 2x + xi$
$\left( {{y^2} + 6} \right) + \left( {{y^2} + 1} \right)i = 2x + xi$
${y^2} + 6 = 2x$
${y^2} + 1 = x$
${y^2} = x - 1$
$x - 1 + 6 = 2x$
$5 = x$
Substitute the value of $ x $ in ${y^2} = x - 1$
$y = \pm 2$
21. If $x + iy = \sqrt {\dfrac{{1 + i}}{{1 - i}}} $, prove that ${x^2} + {y^2} = 1$
Ans. Given that, $x + iy = \sqrt {\dfrac{{1 + i}}{{1 - i}}} \quad $
Taking conjugate both side,
$(x + iy)(x - iy) = \sqrt {\dfrac{{1 + i}}{{1 - i}}} \times \sqrt {\dfrac{{1 - i}}{{1 + i}}} $
${(x)^2} - {(iy)^2} = 1$
${x^2} + {y^2} = 1$
Hence proved.
22. Convert in the polar form $\dfrac{{1 + 7i}}{{{{(2 - i)}^2}}}$
Ans. $\dfrac{{1 + 7i}}{{{{(2 - i)}^2}}} = \dfrac{{1 + 7i}}{{4 + {i^2} - 4i}} = \dfrac{{1 + 7i}}{{3 - 4i}}$
Take conjugate on both side,
$ = \dfrac{{1 + 7i}}{{3 - 4i}} \times \dfrac{{3 + 4i}}{{3 + 4i}}$
$ = \dfrac{{3 + 4i + 21i + 28{i^2}}}{{9 + 16}}$
$ = \dfrac{{25i - 25}}{{25}} = i - 1$
$ = - 1 + i$
$r = |z| = \sqrt {{{( - 1)}^2} + {1^2}} = \sqrt 2 $
Let $\alpha $ be the acute $\angle {\text{s}}$
tan $\alpha = \left| {\dfrac{1}{{ - 1}}} \right|$
$\alpha = \pi /4$
since $\operatorname{Re} (z) < 0,\operatorname{Im} (z) > 0$
$\theta = \pi - \alpha $
$ = \pi - \dfrac{\pi }{4} = 3\pi /4$
$z = r(\operatorname{Cos} \theta + i\operatorname{Sin} \theta )$
$ = \sqrt 2 \left( {\operatorname{Cos} \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}} \right)$
23. Find the real values of $x$ and $y$ if $(x - iy)(3 + 5i)$ is the conjugate of $ - 6 - 24i$
Ans. $(x - iy)(3 + 5i) = - 6 + 24i$
Expand brackets,
$3x + 5xi - 3yi - 5y{i^2} = - 6 + 24i$
Group terms,
$(3x + 5y) + (5x - 3y)i = - 6 + 24i$
$3x + 5y = - 6$
$5x - 3y = 24$
$x = 3$
$y = - 3$
24. If $\left| {{z_1}} \right| = \left| {{z_2}} \right| = 1$, prove that $\left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}}} \right| = \left| {{z_1} + {z_2}} \right|$
Ans. Given that, $\left| {{z_1}} \right| = \left| {{z_2}} \right| = 1\quad $
$ \Rightarrow {\left| {{z_1}} \right|^2} = {\left| {{z_2}} \right|^2} = 1$
$ \Rightarrow {z_1}\overline {{z_1}} = 1$
$\overline {{z_1}} = \dfrac{1}{{{z_1}}} \to \left( 1 \right)$
${z_2}\overline {{z_2}} = 1$
$\overline {{z_2}} = \dfrac{1}{{{z_2}}} \to (2)$ $\left[ {\because z\bar z = |z{|^2}} \right.$
$\left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}}} \right| = \left| {\overline {{z_1}} + \overline {{z_2}} } \right|$
$ = \left| {\overline {{z_1} + {z_2}} } \right|$
$ = \left| {{z_1} + {z_2}} \right|$ $[\because |\bar z| = |z|\quad $
6 Mark Questions
1.Calculate the mean, variance and standard deviation of the following data:
Classes | $ 30 - 40 $ | $ 40 - 50 $ | $ 50 - 60 $ | $ 60 - 70 $ | $ 70 - 80 $ | $ 80 - 90 $ | $ 90 - 100 $ |
Frequency | $ 3 $ | $ 7 $ | $ 12 $ | $ 15 $ | $ 8 $ | $ 3 $ | $ 2 $ |
Ans.
Classes | Frequency $ {f_i} $ | Mid value $ {x_i} $ | $ {f_i}{x_i} $ | $ {\left( {{x_i} - \bar x} \right)^2} $ | $ {f_i}{\left( {{x_i} - \bar x} \right)^2} $ |
$ 30 - 40 $ | $ 3 $ | $ 35 $ | $ 105 $ | $ 729 $ | $ 2187 $ |
$ 40 - 50 $ | $ 7 $ | $ 45 $ | $ 315 $ | $ 289 $ | $ 2023 $ |
$ 50 - 60 $ | $ 12 $ | $ 55 $ | $ 660 $ | $ 49 $ | $ 588 $ |
$ 60 - 70 $ | $ 15 $ | $ 65 $ | $ 975 $ | $ 9 $ | $ 135 $ |
$ 70 - 80 $ | $ 8 $ | $ 75 $ | $ 600 $ | $ 169 $ | $ 1352 $ |
$ 80 - 90 $ | $ 3 $ | $ 85 $ | $ 255 $ | $ 529 $ | $ 1587 $ |
$ 90 - 100 $ | $ 2 $ | $ 95 $ | $ 190 $ | $ 1089 $ | $ 2178 $ |
Total | $ 3100 $ | $ 10050 $ |
Here $n = \Sigma {f_i} = 50,\Sigma {f_i}{x_i} = 3100$
Thus, Mean $\bar x = \dfrac{{\sum {{f_i}} {x_i}}}{n} = \dfrac{{3100}}{{50}} = 62$
Variance ${\sigma ^2} = \dfrac{1}{n}\sum {{f_i}} {(xi - \bar x)^2}$
$ = \dfrac{1}{{50}} \times 10050$
$ = 201$
Standard deviation $\sigma = \sqrt {201} = 14.18$
2. The mean and the standard deviation of $ 100 $ observations were calculated as $ 40 $ and $ 5.1 $ respectively by a student who mistook one observation as $ 50 $ instead of $ 40 $ . What are the correct mean and standard deviation?
Ans. Given that, $n = 100$
Incorrect mean $\bar x = 40$,
Incorrect S.D $(\sigma ) = 5.1$
As $\bar x = \dfrac{{\sum {{x_i}} }}{n}$
$40 = \dfrac{{\sum {{x_i}} }}{{100}} \Rightarrow \sum {{x_i}} = 4000$
$ \Rightarrow $ Incorrect sum of observation $ = 4000$
$ \Rightarrow $ Correct sum of observations $ = 4000 - 50 + 40$
$ = 3990$
Now, Correct mean $ = \dfrac{{3990}}{{100}} = 39.9$
Also, $\sigma = \sqrt {\dfrac{1}{n}\sum {x_i^2} - {{(\bar x)}^2}} $
Use incorrect values,
$5.1 = \sqrt {\dfrac{1}{{100}}\sum {x_i^2} - {{(40)}^2}} $
$ \Rightarrow 26.01 = \left[ {\dfrac{1}{{100}}\sum {x_i^2} - 1600} \right]$
$ = 162601$
Incorrect $\sum {x_i^2} = 162601$
Correct $\sum {x_i^2} = 162601 - {(50)^2} + {(40)^2}$
$ = 162601 - 2500 + 1600 = 161701$
Correct $\sigma = \sqrt {\dfrac{1}{{100}}{\text{ correct }}\sum {x_i^2} - {{({\text{ correct }}\bar x)}^2}} $
$ = \sqrt {\dfrac{1}{{100}}(161701) - {{(39.9)}^2}} $
$ = \sqrt {1617.01 - 1592.01} $
$ = \sqrt {25} = 5$
Therefore, the correct mean is $ 39.9 $ and the correct standard deviation is $ 5. $
3. Given, $ 200 $ candidates the mean and standard deviation was found to be $ 10{\text{ and 15}} $ respectively. After that if was found that the scale $ 43 $ was misread as $ 34. $ Find the correct mean and correct S.D
Ans. Given that, $n = 200,\,\,\bar X = 40,\,\,\sigma = \overline {15} $
$ \bar X = \dfrac{1}{n}\sum {{x_i}}$
$= \sum {{x_i}}$
$= n\bar X$
${\text{Substitute}}\,{\text{the}}\,{\text{values,}}$
$= 200 \times 40$
$= 8000$
Corrected $\sum {{x_i}} = $ Incorrect $\sum {{x_i}} - $ (Sum of incorrect $ + $ Sum of correct value)
$ = 8000 - 34 + 43 = 8009$
Thus, Corrected mean $ = \dfrac{{{\text{ Corrected }}\sum {{x_i}} }}{n}$
$= \dfrac{{8009}}{{200}}$
$= 40.045$
$\sigma = 15$
${15^2} = \dfrac{1}{{200}}\left( {\sum {x_i^2} } \right) - {\left( {\dfrac{1}{{200}}\sum {{x_i}} } \right)^2}$
Substitute the values,
$225 = \dfrac{1}{{200}}\left( {\sum {x_i^2} } \right) - {\left( {\dfrac{{8000}}{{200}}} \right)^2}$
$225 = \dfrac{1}{{200}} \times 1825 = 365000$
Incorrect $\sum {x_i^2} = 365000$
Corrected $\sum {x_i^2} = $ (incorrect $\left. {\sum {x_i^2} } \right) - $(Sum of squares of incorrect values) $ + $ (Sum of square of
correct values)
$ = 365000 - {(34)^2} + {(43)^2} = 365693$
Corrected $\sigma = \sqrt {\dfrac{1}{n}\sum {x_i^2} - {{\left( {\dfrac{1}{n}\sum {{x_i}} } \right)}^2}} $
$ = \sqrt {\dfrac{{365693}}{{200}} - {{\left( {\dfrac{{8009}}{{200}}} \right)}^2}} $
$ = \sqrt {1828.465 - 1603.602} $
$ = 14.995$
4. Find the mean deviation from the mean $ 6,7,10,12,13,4,8,20 $
Ans. Let $\bar X$ be the mean
$\bar X = \dfrac{{6 + 7 + 10 + 12 + 13 + 4 + 8 + 20}}{8} = 10$
${x_i}$ | $\left| {{d_i}} \right| = \left| {{x_i} - \bar X} \right| = \left| {{x_i} - 10} \right|$ |
$6$ | $4$ |
$7$ | $3$ |
$10$ | $0$ |
$12$ | $2$ |
$13$ | $3$ |
$4$ | $6$ |
$8$ | $2$ |
$20$ | $10$ |
Total | $\sum {{d_i}} = 30$ |
$\sum {{d_i}} = 30$ and $n = 8$
Thus, $MD = \dfrac{1}{n}\sum {\left| {{d_i}} \right|} = \dfrac{{30}}{8} = 3.75$
$MD = 3.75$
5. Find two numbers such that their sum is $ 6 $ and the product is $ 14. $
Ans. Let $x$ and $y$ be the no.
Given that, $x + y = 6$
$xy = 14$
${x^2} - 6x + 14 = 0$
$D = - 20$
We have , $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$
Substitute the values,
$x = \dfrac{{ - ( - 6) \pm \sqrt { - 20} }}{{2 \times 1}}$
$ = \dfrac{{6 \pm 2\sqrt 5 i}}{2}$
$ = 3 \pm \sqrt 5 {\text{i}}$
When $x = 3 + \sqrt 5 {\text{i}}$
$y = 6 - (3 + \sqrt 5 {\text{i}})$
$ = 3 - \sqrt 5 {\text{i}}$
When $x = 3 - \sqrt 5 {\text{i}}$
$y = 6 - (3 - \sqrt 5 {\text{i}})$
$ = 3 + \sqrt 5 {\text{i}}$
Therefore, the numbers are $3 + \sqrt 5 {\text{i}}$ and $3 - \sqrt 5 {\text{i}}$.
6. Convert into polar form $z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\operatorname{Sin} \dfrac{\pi }{3}}}$
Ans. Given that, $z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\operatorname{Sin} \dfrac{\pi }{3}}}$
Substitute the known values,
$z = \dfrac{{i - 1}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i}}$
$ = \dfrac{{2(i - 1)}}{{1 + \sqrt 3 i}} \times \dfrac{{1 - \sqrt 3 i}}{{1 - \sqrt 3 i}}$
$z = \dfrac{{\sqrt 3 - 1}}{2} + \dfrac{{\sqrt 3 + 1}}{2}i$
$r = |z| = {\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)^2}$
$r = 2$
Let $\alpha $ be the acute $\angle {\text{s}}$,
$\tan \alpha = \left| {\dfrac{{\dfrac{{\sqrt 3 + 1}}{2}}}{{\dfrac{{\sqrt 3 - 1}}{2}}}} \right|$
$ = \left| {\dfrac{{\sqrt 3 \left( {1 + \dfrac{1}{{\sqrt 3 }}} \right)}}{{\sqrt 3 \left( {1 - \dfrac{1}{{\sqrt 3 }}} \right)}}} \right|$
$ = \left| {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{\pi }{6}}}{{1 - \tan \dfrac{\pi }{4}\tan \dfrac{\pi }{6}}}} \right|$
$\tan \alpha = \left| {\tan \left( {\dfrac{\pi }{4} + \dfrac{\pi }{6}} \right)} \right|$
$\alpha = \dfrac{\pi }{4} + \dfrac{\pi }{6} = \dfrac{{5\pi }}{{12}}$
$z = 2\left( {\operatorname{Cos} \dfrac{{5\pi }}{{12}} + i\operatorname{Sin} \dfrac{{5\pi }}{{12}}} \right)$
7. If $\alpha $ and $\beta $ are different complex number with $|\beta | = 1$. Then find $\left| {\dfrac{{\beta - \alpha }}{{1 - \bar \alpha \beta }}} \right|$
Ans. ${\left| {\dfrac{{\beta - \alpha }}{{1 - \bar \alpha \beta }}} \right|^2} = \left( {\dfrac{{\beta - \alpha }}{{1 - \bar \alpha \beta }}} \right)\left( {\dfrac{{\overline {\beta - \alpha } }}{{1 - \bar \alpha \beta }}} \right)\quad \,\,\left[ {\because |z{|^2} = z\bar z} \right.$
$ = \left( {\dfrac{{\beta - \alpha }}{{1 - \bar \alpha \beta }}} \right)\left( {\dfrac{{\bar \beta - \bar \alpha }}{{1 - \alpha \bar \beta }}} \right)$
$ = \left( {\dfrac{{\beta \bar \beta - \beta \bar \alpha - \alpha \bar \beta + \alpha \bar \alpha }}{{1 - \alpha \beta - \alpha \beta + \alpha \bar \alpha \beta \bar \beta }}} \right)$
$\left. { = \dfrac{{|\beta {|^2} - \beta \bar \alpha - \alpha \bar \beta + |\alpha {|^2}}}{{1 - \alpha \bar \beta - \bar \alpha \beta + |\alpha {|^2}|\beta {|^2}}}} \right\}$
$ 1-\beta \bar{\alpha }-\alpha \bar{\beta }+|\alpha {{|}^{2}} $
$ 1-\alpha \bar{\bar{\beta }}-\overline{\bar{\alpha }\beta }\beta +|\alpha {{|}^{2}} $
$ \because$ $ |\beta |=1$
$ =1 $
$ \left| \dfrac{\beta -\alpha }{1-\alpha \beta } \right|=\sqrt{1} $
$ \left| \dfrac{\beta -\alpha }{1-\vec{\alpha }\beta } \right|=1 $
Important Related Links for CBSE Class 11
CBSE Class 11 Study Materials |
FAQs on Important Questions for CBSE Class 11 Maths Chapter 13 - Statistics
1. What makes Chapter 13 - Limits and Derivatives important in Class 11 Maths?
This chapter lays the foundation for calculus, a crucial branch of mathematics. It introduces concepts like limits and derivatives, which are fundamental for understanding change and motion in various real-world scenarios.
2. Why should I focus on important questions from Chapter 13?
Practicing important questions helps you grasp the core concepts of limits and derivatives, ensuring a solid understanding. These questions often appear in exams, making them valuable for scoring well and building a strong foundation for advanced mathematical topics.
3. How can solving these questions from class 11 chapter 13 benefit my overall math skills?
Mastering limits and derivatives enhances your problem-solving skills and analytical thinking. These concepts are fundamental to various mathematical applications, laying the groundwork for advanced studies in calculus and related fields.
4. Are there specific strategies for approaching questions on limits and derivatives?
Understanding the concepts thoroughly is key. Start by practicing basic problems and gradually move to more complex ones. Break down the problems into smaller steps, and don't hesitate to seek help if you encounter difficulties. Consistent practice is the key to success.
5. Where can I find these important questions for Class 11 Chapter 13 Limits and Derivatives?
Important questions for Chapter 13 can be found in your textbook, reference guides, or online educational platforms. Platforms like Vedantu often provide curated sets of important questions, allowing you to focus your efforts on mastering the most relevant concepts for exams.