

Class 12 - Important Formulas

Chapter 7 - Alternating Current

S.No.	Term	Description
1	Alternating	It is current whose magnitude changes with time and direction reverses
	current	periodically. $I=I_0 \sin \omega t$ where I_0 is the peak value of a.c. and $\omega=2\pi/T$ is
2	Mannaghan	the frequency
2	Mean value of a.c.	$I_m = 2I_0/\pi = 0.636I_0$
3	RMS value	$I_{rms}=I_0/\sqrt{2}$
4	a.c. through	Alternating emf is in phase with current
	resistor	
5	a.c. through	Emf leads the current by an phase angle π/2
6	inductor a.c. through	Emf lags behind the current by an phase angle π/2
0	capacitor	Enil lags benind the current by an phase angle 1/2
7	Inductive	Opposition offered by inductor to the flow of current mathematically,
	reactance	$X_{L} = \omega L = 2\pi f L$
8	Capacitive	Opposition offered by capacitor to the flow of current mathematically,
	reactance	$X_{c} = \frac{1}{\omega C} = \frac{1}{2\pi fC}$
		$\omega C = 2\pi f C$
9	a.c. through	Emf leads the current by an phase angle ϕ given by $\tan \phi = \frac{\omega L}{R}$ and
	series LR circuit	$tan \varphi = \frac{1}{R}$
		impedance of circuit is $Z = \sqrt{R^2 + (\omega^2 L^2)}$
10	a.c. through	Emf lags behind the current by an phase angle ϕ given by $\tan \phi = \frac{1}{\omega C}$
	series CR circuit	$r = \frac{1}{R}$
		and impedance of circuit is $Z = \sqrt{R^2 + \left(\frac{1}{\omega^2 C^2}\right)}$
		$L = \sqrt{K} + \left(\frac{\omega^2 C^2}{\omega^2 C^2}\right)$
11	a.c. through	Emf leads/lags behind the current by an phase angle ϕ given by
	series LCR circuit	
	Circuit	$\tan \phi = \frac{\omega L - \frac{1}{\omega C}}{R}$ emf leads the current when $\omega L > \frac{1}{\omega C}$ and lags behind
		when $\omega L < \frac{1}{\omega C}$ and impedance of circuit is $Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$
		1 ()
12	Average power	$P_{\text{avg}} = I_{\text{rms}}^2 R = E_{\text{rms}} I_{\text{rms}} \cos \phi$ Where ϕ is called power factor of the circuit.
13	of an a.c. circuit Transformer	It is a device used to change low alternating voltage at high current into
13	1 ansionne	high voltage at low current and vice-versa. Primary and secondary
		voltage for a transformer are related as $V_s = V_p \frac{N_s}{N}$ and current through
		$V_S = V_P \frac{s}{N_P}$
		the coils is related as N_{-}
		the coils is related as $I_{S}=I_{P}\frac{N_{P}}{N_{S}}$
		IV _S