

#### PERMUTATION AND COMBINATIONS

#### FUNDAMENTAL PRINCIPLE OF COUNTING

#### 1. MULTIPLICATION PRINCIPLE OF COUNTING

If a job can be done in m ways, and when it is done in any one of these ways another job can be done in n, then both the jobs together can be done in mn ways.

#### 2. ADDITION PRINCIPLE OF COUNTING

If a job can be done in m ways and another job can be done in n ways then either of these jobs can be done in m + n ways.

#### **PERMUTATIONS**

Each of different arrangement which can be made by taking some or all of a number of things is called a permutation.

## 1. COUNTING FORMULAE FOR PERMUTATION To find the value of ${}^{n}P_{r}$

$${}^{n}P_{r} = n (n-1) (n-2) \dots (n-r+1)$$

$$= \frac{n!}{(n-r)!} \text{ (using factorial notation } n! = n(n-1) \dots$$

3.2.1.) where  $0 \le r \le n$ .

In particular

- The number of permutations of n different things taken all at a time =  ${}^{n}P_{n} = n!$ 
  - ${}^{n}P_{0} = 1$ ,  ${}^{n}P_{1} = n$  and  ${}^{n}P_{n-1} = {}^{n}P_{n} = n!$
  - ${}^{n}P_{r} = n \; ({}^{n-1}P_{r-1})$  where  $r = 1, 2, \ldots, n$ .



### 3. PERMUTATION OF *n* DISTINCT OBJECT WHEN REPETITION IS ALLOWED

• The number of permutations of n different things taken r at time when each thing may be repeated any number of times is  $n^r$ .

# 4. ARRANGEMENT OF *n* THINGS WHEN ALL ARE NOT DISTINCT

• The number of permutations of n things taken all at a time, where x are alike of one kind, y are alike of second kind and z are alike of third kind and the rest n-(x+y+z) are all distinct is given by

$$\frac{n!}{x!y!z!} \quad (x+y+z \le n)$$

#### **CIRCULAR PERMUTATIONS**

In the event of the given n things arranged in a circular or even elliptical permutation—and in this case the first and the last thing in the arrangement are indistinguishable—the number of permutations is (n-1)!.

NUMBER OF CIRCULAR PERMUTATIONS OF *n* DIFFERENT THINGS TAKEN *r* AT A TIME



**CASE I:** If clockwise and anticlockwise orders are taken as different, then the required number of circular permutations  $=\frac{{}^{n}P_{r}}{r}$ .

**CASE II:** If clockwise and anticlockwise orders are taken as not different, then the required number of circular permutations =  $\frac{^{n}P_{r}}{^{2}r}$ 

#### **COMBINATIONS**

Each of different grouping or selections that can be made by some or all of a number of given things without considering the order in which things are placed in each group, is called combinations.

#### 1. COUNTING FORMULAE FOR COMBINATIONS

The number of combinations of n different things taken r at a time is given by  ${}^{n}C_{r}$  or C(n, r)

$${}^{n}C_{r} = \frac{n!}{(n-r)! \ r!} \qquad (0 \le r \le n)$$
as 
$${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$$

Key results on  ${}^{n}C_{r}$ 

- ${}^{n}C_{0} = {}^{n}C_{n} = 1$
- ${}^{n}C_{1} = n$  There are n ways to select one thing out of n distinct things.
  - $\bullet \quad {}^{n}C_{r} = {}^{n}C_{n-r}$
  - If *n* is odd then the greatest value of  ${}^{n}C_{r}$  is  ${}^{n}C_{\frac{n+1}{2}}$  or  ${}^{n}C_{\frac{n-1}{2}}$ .



• If *n* is even then the greatest value of  ${}^{n}C_{r}$  is  ${}^{n}C_{n/2}$ .

# 6. SELECTION FROM DISTINCT/IDENTICAL OBJECTS (I) SELECTION FROM DISTINCT OBJECTS

• The number of ways (or combinations) of selection from *n* distinct objects, taken at least one of them is

$${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n} = 2^{n} - 1$$

### (II) SELECTION FROM IDENTICAL OBJECTS

The number of ways of selections of atleast one out of  $a_1 + a_2 + a_3 + \ldots + a_n + k$  objects, where  $a_1$  are alike of one kind, ...... $a_n$  are alike of nth kind and k are distinct is

$$(a_1 + 1) (a_2 + 1) \dots (a_n + 1) 2^k - 1$$
.

#### 8. DIVISION OF DISTINCT OBJECT IN TO GROUPS

In the case of grouping we have the following. If m + n + p things are divided into 3 groups one containing m, the second n and the third p things; number of groupings is

$$= \frac{(m+n+p)C_m \cdot {(n+p)}C_n \cdot {^p}C_p}{m! \, n! \, p!} \text{ where } m, n, p \text{ are distinct natural numbers.}$$

In general, the number of ways in which mn different things can be divided equally into m distinct groups is  $\frac{(mn)!}{(n!)^m}$  when order of groups is important.



#### 9. DIVISION OF IDENTICAL OBJECTS INTO GROUPS

The number of ways of division or distribution of n identical things into r different groups is  $^{n+r-1}C_{r-1}$  or  $^{n-1}C_{r-1}$  according as empty groups are allowed or not allowed.

#### 10. ARRANGEMENTS IN GROUPS

The number of ways of distribution and arrangement of n distinct things into r different groups is  $n! \, ^{n+r-1}C_{r-1}$  or  $n! \, ^{n-1}C_{r-1}$  according as empty groups are allowed or not allowed.