

Purification and Characterization of Organic Compounds

Purification of organic compounds: A large number of methods are available for the purification of substances
(i) *Simple crystallisation*: This is the most common method used to purify organic solids. It is based upon the fact that whenever a crystal is formed, it tends to leave out the impurities.

(ii) *Fractional crystallisation*: The process of separation of different components of a mixture by repeated crystallisations is called fractional crystallisation.

(iii) *Sublimation*: Certain organic solids on heating directly change from solid to vapour state without passing through a liquid state, such substances are called *sublimable* and this process is called *sublimation*.

Solid Heat Vapour

(iv) *Steam distillation*: This method is applicable for the separation and purification of those organic compounds (solids or liquids) which (a) are insoluble in water (b) are

volatile in steam (c) possess a high vapour pressure (10-15 mm Hg) at 373 K and (d) contain non-volatile impurities.

(vii) *Azeotropic distillation*: Azeotropic mixture is a mixture having constant boiling point. The most familiar example is a mixture of ethanol and water in the ratio of 95.87 : 4.13 (a ratio present in rectified spirit). It boils at 78.13°*C*.

Types of chromatography: Depending upon the nature of the stationary and the mobile phases, the different types of chromatographic techniques commonly used are in a given table,

Mobile/S	Uses
tationary	
Phase	
Liquid/S	Large scale separations
olid	
Liquid/S	Qualitative analysis
olid	(identification and
	characterization of organic
	compounds)
Liquid/S	Qualitative and quantitative
olid	analysis
	tationary Phase Liquid/S olid Liquid/S olid

2

chromatography		
Gas-liquid	Gas/Liqu	Qualitative and quantitative
chromatography	id	analysis
(GLC)		
Partition	Liquid/L	Qualitative and quantitative
chromatography	iquid	analysis of polar organic
or ascending	÷	compounds (sugars, α-amino
paper		acids and inorganic
chromatography		compounds)

Qualitative analysis:

Carbon is an essential component of an organic compound. The following method is known as the copper oxide test.

 $C + 2CuO \xrightarrow{\text{Heat}} CO_2 + 2Cu \quad \mathbf{\hat{g}}$ $Ca(OH)_2 + CO_2 \xrightarrow{\text{Heat}} CaCO_3 + H_2O$ $\text{Lime water} \qquad \text{Milky}$ $H_2 + CuO \xrightarrow{\text{Heat}} H_2O + Cu \quad \mathbf{\hat{g}}$

 $\begin{array}{c} CuSO_4 + 5H_2O \longrightarrow CuSO_4 \cdot 5H_2O \\ \begin{array}{c} \text{Colourles s} \\ \text{(Anhydrous)} \end{array} \end{array} \xrightarrow{\text{Blue}} (Hydrated) \end{array}$

Lassaigne method

This is used to detect nitrogen, halogen and sulphur.

Lassaigne method (Detection of elements)

Element	Sodium Extract (S.E.)	Confirmed Test	Reaction
Nitrogen	$Na + C + N \xrightarrow{\Delta} NaCN$ (S.E.)	S.E.+ FeSO ₄ + NaOH , boil and cool + FeCl ₃ + conc.HCl	$2\text{NaCN} + \text{FeSO}_4 \longrightarrow \text{Fe}(\text{CN})_2 + \text{Na}_2\text{SO}_4$ Fe(CN) ₂ + 4NaCN $\longrightarrow \text{Na}_4[\text{Fe}(\text{CN})_6]$ Sodium ferrocyanide
		Blue or green colour	$3Na_{4}[Fe(CN)_{6}] + 4FeCl_{3} \xrightarrow{HCl} Fe_{4}[Fe(CN)_{6}]_{3} + 12NaC$ Ferric ferrocyanide (Prussian blue)
Sulphur	$2Na + S \xrightarrow{\Delta} Na_2S$ (S.E.)	(i) S.E. + sodium nitro prusside (ii) S.E+ $CH_3CO_2H + (CH_3CO_2)_2Pb$ A black ppt.	(i) $Na_2S + Na_2[Fe(CN)_5 NO] \longrightarrow Na_4[Fe(CN)_5 NO.S]$ or Sodium nitroprusside (Purple) $Na_3[Fe(ONSNa)(CN)_5]$ Sodium thionitroprusside (Violet) (ii) $Na_2S + (CH_3COO)_2Pb \longrightarrow CH_3COOH \longrightarrow PbS \downarrow + 2CH_3COONa$ black ppt.
Halogen	$Na + X \xrightarrow{\Delta} NaX$ (S.E.) $(X = Cl, Br, I)$	S.E. +HNO ₃ + AgNO ₃ (i) White <i>ppt</i> soluble in <i>aq</i> NH ₃ confirms Cl. (ii) Pale yellow <i>ppt</i> partially soluble in aq. NH ₃ confirms <i>Br</i> . (iii) Yellow <i>ppt</i> insoluble in <i>aq</i> NH ₃ confirms <i>I</i> .	$NaX + AgNO_{3} \xrightarrow{HNO_{3}} AgX \downarrow_{ppt}$ $AgCI + 2NH_{3}(aq) \longrightarrow [Ag(NH_{3})_{2}]CI$ White ppt soluble $AgBr + 2NH_{3}(aq) \rightarrow [Ag(NH_{3})_{2}]Br$ Yellow ppt. Partially soluble $AgI + NH_{3}(aq) \longrightarrow Insoluble$
Nitrogen and sulphur together	$Na + C + N + S \xrightarrow{\Delta} NaCNS$ (S.E.) with excess of <i>Na</i> the thiocyanate formed decomposes into cyanide and sulphide. NaCNS + 2Na \rightarrow NaCN + Na ₂ S	As in test for nitrogen; instead of green or blue colour, blood red colouration confirms presence of N and S both.	3NaCNS + FeCl ₃ → [Fe(SCN) ₃ or [Fe(SCN)]Cl ₂ + 3NaCl Ferric sulphocyanide (Blood red colour)

Calculation of Empirical and Molecular formula

(i) *Empirical formula: Empirical formula of a substance gives the simplest whole number ratio between the atoms of the various elements present in one molecule of the*

4

substance. For example, empirical formula of glucose is $_{CH_2O}$, *i.e.* for each carbon atom, there are two *H*-atoms and one oxygen atom. Its molecular formula is however, $_{C_6H_{12}O_6}$.

(ii) *Molecular formula: Molecular formula of a substance* gives the actual number of atoms present in one molecule of the substance.

Molecular formula = $_{n\times}$ Empirical formula Where, *n* is a simple integer 1, 2, 3,..... etc. given by the equation,

 $n = \frac{\text{Molecular mass of the compound}}{\text{Empirical formula mass of the compound}}$