

Solutions

Parts per million (*ppm***) and parts per billion (***ppb***): It is**

convenient to measure the concentration of *trace quantities* of solutes in parts per million and parts per billion. *It is independent of the temperature*.

 $ppm = \frac{\text{mass of solute component}}{10^{6}} \times 10^{-6}$ Total mass of solution $\frac{3}{10}$ Solute component $\times 10^9$ $ppb = \frac{\text{mass of solute component}}{s} \times$

Normality (*N***)**: Normality of solution is equal to the number of gram equivalents of a solute present per *litre* of the solution. It can be calculated by following formulas;

It Call De Calculated by IOHOWING

(i) Normality (N) = $\frac{\text{Number of gram equivalent of solute}}{\text{Mathematical}}$ er of gram equivelent of
Volume of solution (l) $=$ (ii) Normality (N) = $\frac{\text{Weight of solute in g.}}{\text{gram equivalent weight of solute} \times \text{Volume of solution (l)}}$ $=\frac{W \times W}{\text{gram equivalent weight of solute}\times\frac{1}{2}}$

Molarity (*M***)**: Molarity of a solution is equal to the *number of moles of the solute present per litre of solution.* It can be calculated by following formulas,

 (i) $M = \frac{\text{No. of moles of solute}(n)}{\text{Vol. of solution in litres}}$,

(ii) If molarity and volume of solution are changed from M_1, V_1 to M_2, V_2 . Then,

 $M_1V_1 = M_2V_2$ (Molarity equation)

(ii) In balanced chemical equation, if $_{n_1}$ moles of reactant one react with $_{n_2}$ moles of reactant two. Then,

$$
\frac{M_1 V_1}{n_1} = \frac{M_2 V_2}{n_2}
$$

(iii) Volume of water added to get a solution of molarity $_{M_2}$ from V_1 *ml* of molarity M_1 is

$$
V_2 - V_1 = \left(\frac{M_1 - M_2}{M_2}\right) V_1
$$

(iv) If two solutions of the same solute are mixed then molarity (M) of resulting solution.

$$
M = \frac{M_1 V_1 + M_2 V_2}{(V_1 + V_2)}
$$

Here, M_1V_1 are molarity and volume of initial solution and M_2V_2 are

molarity and volume of final solution.

Relation between molarity and normality

Normality of solution = molarity $\times \frac{\text{Molecular mass}}{\text{Equivalent mass}}$ $\times \frac{\text{Molecular mass}}{\text{m} \cdot \text{m}}$

Normality \times equivalent mass = molarity \times molecular mass

(1) $m = \frac{\text{Number of moles of the solute}}{\text{Weight of the solvent in grams}} \times 1000$ $m = \frac{\text{Number of moles of the solute}}{\text{94.4}} \times$

 (ii) *M* = $\frac{\text{Strength per 1000 grams of so}}{\text{Molecular mass of solute}}$ $=\frac{\text{Strength per 1000 grams of solvent}}{}$

Relation between molarity (*M***) and molality (***m***)**

Molality (*m*) = Density - $\frac{\text{Molarity} \times \text{molecular mass}}{1000}$ Molarity $-\frac{Molarity \times}{M}$

Formality (*F*): Formality of a solution may be defined as the number of gram formula masses of the ionic solute dissolved per litre of the solution. It is represented by *F* .

Formality (F) = $\frac{\text{Number of gram formula masses of}}{\text{Volume of solution in litres}}$ Number of gram formula masses of solute

Mole fraction (X) : To find the mole fraction, divide moles of a constituent(either solute or solvent) by the total moles of both the constituents (solute and solvent).It is denoted by the letter *X* .

Let in a solution A is solute and B is solvent, then their mole fractions are given below;

Mole fraction of Solute *A*, $X_A = \frac{n_A}{n_A + n_B}$ $A = \frac{n_A}{n_A + n}$ $X_A = \frac{n_A}{n_A + n_A}$

Mole fraction of solvent_{*B*}, $X_B = \frac{n_B}{n_A + n_B}$ $B = \frac{n_B}{n_A + n}$ $X_B = \frac{n_B}{n_A + m_A}$

Azeotropic mixture

Azeotropes are defined as the mixtures of liquids that boil like a pure liquid at constant temperature and possess components in same composition, in liquid as well as in vapour phase.

Osmotic pressure (π)

The osmotic pressure of a solution at a particular temperature may be defined as the excess hydrostatic pressure that builds up when the solution is separated from the solvent by a semi-permeable membrane. It is denoted by

 π .

According to Boyle Van't Hoff law (at conc. temp.)

 $\pi \propto C$

According to Gaylussac Van't Hoff law (at conc. temp.)

.....(i)

 $\pi \propto T$

.....(ii) From equation (i) and (ii)

 $\pi \propto cT$, $\pi = cRT$ (Van't Hoff equation)

 $\frac{n}{V}RT$ $\pi = \frac{n}{V}RT$ $\left(\therefore C = \frac{n}{V}\right)$ $\left(\therefore C = \frac{n}{V}\right)$ $\begin{pmatrix} \therefore & C = \frac{n}{V} \end{pmatrix}$ $C = \frac{n}{V}$; $\pi = \frac{w}{m} \frac{R T}{V}$ *RT m* $\pi = \frac{w}{m} \frac{RT}{V}$ $\left(\therefore n = \frac{w}{m}\right)$ $\left(\therefore n = \frac{w}{m}\right)$ $\left(\therefore n = \frac{w}{m}\right)$ $n = \frac{w}{x}$

Here, *C* = concentration of solution in *moles* per *litre* $R = gas constant$; *T* = temperature $n =$ number of *moles* of solute; $V =$ volume of solution $m =$ molecular weight of solute; $w =$ weight of solute

(iv) *Relation of osmotic pressure with different colligative properties*: Osmotic pressure is related to relative lowering of vapour pressure, elevation of boiling point and depression of freezing point according to the following relations,

(a)
$$
\pi = \left(\frac{P_A^o - P_A}{P_A^o}\right) \times \frac{dRT}{M}
$$
 (b) $\pi = \Delta T_b \times \frac{dRT}{1000 \times K_b}$

$$
\textbf{(C)}\ \ \pi = \Delta T_f \times \frac{dRT}{1000 \times K_f}
$$

In the above relations, π = Osmotic pressure; d = Density of solution at temperature T ; $R =$ Universal gas constant;

 $M =$ Mol. Mass of solute;

 K_b = Molal elevation constant of solvent;

 K_f = Molal depression constant of solvent

Elevation in b.pt. of the solvent

If T_b is the boiling point of the solvent and \overline{T} is the boiling point of the solution, the difference in the boiling point (ΔT) or ΔT_b) is called the elevation of boiling point.

 $T - T_b = \Delta T_b$ **Of** ΔT

Elevation in boiling point is determined by Landsberger's method and Cottrell's method. Study of elevation in boiling point of a liquid in which a non-volatile solute is dissolved is called as ebullioscopy.

Important relations concerning elevation in boiling point

$$
(1) \Delta T_b \propto p^0 - p
$$

Here ,^{p°-p} is *lowering of vapour pressure*.

 (ii) $\Delta T_b = K_b \times m$

Here, K_b = molal elevation constant; $m =$ Molality of the solution; $\Delta T_b =$ Elevation in boiling point

As you know, $m = \frac{w \times 1000}{W}$ $=\frac{W \times}{A}$

Thus, $\Delta T_b = \frac{1000 \times K_b}{m \times W}$ $T_b = \frac{1000 \times K_b \times w}{m \times W}$ $\Delta T_b = \frac{1000 \times K_b \times w}{m \times W}$ **OT** $m = \frac{1000 \times K_b}{\Delta T_b \times W}$ $m = \frac{1000 \times K_b \times w}{m}$ *b b* $\Delta T_h \times$ $=\frac{1000\times K_b\times}{1000\times K_b\times}$

Here, *Kb* is *molal elevation constant*

Depression in f.pt. of the solvent

The depression in freezing point αT or αT_f of a solvent is the difference in the freezing point of the pure solvent (T_s) and the solution (T_{sol}) .

 $T_s - T_{sol} = \Delta T_f$ **Of** ΔT

Important relations concerning depression in freezing point.

 (i) $\Delta T_f \propto p^0 - p$

Here, $P^0 - P$ is Depression in freezing point.

$$
(ii) \Delta T_f = K_f \times m
$$

Here, K_f molal depression constant $m =$ Molality of the solution; $\Delta T_f =$ Depression in freezing point.

As you know, $m = \frac{w \times 1000}{w}$ $=\frac{W \times}{W}$

Thus,

 $m \times W$ $T_f = \frac{1000 \times K_f \times w}{m \times W}$ $\Delta T_f = \frac{1000 \times K_f \times w}{m \times W}$ **OT** $m = \frac{1000 \times K_f}{\Delta T_f \times W}$ $m = \frac{1000 \times K_f \times w}{1000}$ *f f* $\Delta T_f \times$ $=\frac{1000 \times K_f \times}{4 \times 1000}$

Where K_f is *molal depression constant*.

Van't Hoff's factor (*i***):** In 1886, Van't Hoff introduced a factor '*i*' called Van't Hoff's factor, to express the extent of association or dissociation of solutes in solution. It is ratio of the normal and observed molecular masses of the solute, *i.e.*,

 $i = \frac{\text{Normal molecular mass}}{\text{Observed molecular mass}}$

Relative lowering of vapour pressure $= \frac{P_A^o - P_A}{P_A^o} = iX_B$ $\frac{P_A^o - P_A}{P_A^o} = iX$ $=$ $\frac{P_{A}^{o}-P_{A}}{P_{A}}=$

Elevation of boiling point, $\Delta T_b = ik_b m$ Depression in freezing point, $\Delta T_f = ik_f m$

Osmotic pressure, $\pi = \frac{inR}{V}$ $\pi = \frac{inRT}{V}$; $\pi = iCRT$

From the value of '*i*', it is possible to calculate degree of dissociation or degree of association of substance.

Degree of dissociation (α **) : or ions.**

The fraction of total molecules that dissociate into simpler mole cules or ions is known as Degree of dissociation.

1 1 $\overline{}$ $=\frac{i-m}{m}$ $\alpha = \frac{i-1}{i}$; *m*= number of particles in solution

Degree of association (α) **:**

The fraction of the total number of molecules which associate or combine together resulting in a bigger molecules being forme d.

 $1/m - 1$ 1 \overline{a} $=\frac{i-j}{1/m}$ $\alpha = \frac{i-1}{i}$; *m* = number of particles in solution.