Revision Notes

Class - 11 Mathematics

Chapter 5-Complex Number and Quadratic Equations

1. Definition

When a given number is in the form of $a+i b$, where $a, b \in R$ and $i=\sqrt{-1}$ it is called a complex number and such number is denoted by ' z '.
$z=a+i b$
Where,
$a=$ real part of complex number and,
$b=$ imaginary part of complex number.

1.1 Conjugate of a Complex Number

Consider a complex number $z=a+i b$,
Then its conjugate is written as ' \bar{z} '.
Whose value is defined as $\bar{z}=a-i b$.

2. ALGEBRA OF COMPLEX NUMBERS

Let $z_{1}=a+i b$ and $z_{2}=c+i d$ be two complex numbers where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}$ and $\mathrm{i}=\sqrt{-1}$.

1. Addition:

$$
\begin{aligned}
z_{1}+z_{2} & =(a+b i)+(c+d i) \\
& =(a+c)+(b+d) i
\end{aligned}
$$

2. Subtraction:

$$
\begin{aligned}
z_{1}-z_{2} & =(a+b i)-(c+d i) \\
& =(a-c)+(b-d) i
\end{aligned}
$$

3. Multiplication:

$$
\begin{array}{r}
z_{1} \cdot z_{2} \quad(a+b i)(c+d i) \\
=a(c+d i)+b i(c+d i) \\
=a c+a d i+b c i+b d i^{2} \\
=\quad a c-b d+(a d+b c) i \\
\left(\because i^{2}=-1\right)
\end{array}
$$

Note:

1. $a+i b=c+i d$
$\Leftrightarrow a=c \backslash \quad b=d$
2. $i^{4 k+r}=\left\{\begin{array}{rr}1 ; & r=0 \\ i ; & r=1 \\ -1 ; & r=2 \\ -i ; & r=3\end{array}\right.$
3. $\sqrt{b} \sqrt{a}=\sqrt{b a}$ is only possible if atleast one of either a or b is non-negative.

3. ARGAND PLANE

Any complex number $z=a+i b$ can be represented by a unique point $P(a, b)$ in th argand plane.

$P(a, b)$ represents the complex number $z=a+i b$.

3.1 Modulus and Argument of Complex Number

Consider a complex number $z=a+i b$.

(i) Distance of z from origin is reffered as modulus of complex number z. It is represented by $r=|z|=\sqrt{a^{2}+b^{2}}$
(ii) Here, θ i.e.,the angle made by ray OP with positive direction of real axis is called argument of \mathbf{z}.

Note:

$\mathrm{z}_{1}>\mathrm{z}_{2}$ or $\mathrm{z}_{1}<\mathrm{z}_{2}$ has no meaning but $\left|\mathrm{z}_{1}\right|>\left|\mathrm{z}_{2}\right|$ or $\left|\mathrm{z}_{1}\right|<\left|\mathrm{z}_{2}\right|$ holds meaning.

3.2 Principal Argument

The argument ' θ ' of complex number $z=a+i b$ is called the principal argument of z if $-\pi<\theta \leqslant \pi$.

Consider $\tan \alpha=\left|\frac{b}{a}\right|$, and θ be the $\arg (z)$.
i.

ii.

iii.

iv.

In (iii) and (iv) the principal argument is given by $-\pi+\alpha$ and $-\alpha$ respectively.

4. POLAR FORM

LIVE ONLINE TUTORING

$$
a=r \cos \theta \quad b=r \sin \theta
$$

where $r=|z|$ and $\theta=\arg (z)$

$$
\begin{aligned}
\therefore & z=a+i b \\
& =r(\cos \theta+i \sin \theta)
\end{aligned}
$$

Note:

A complex number z can also be represented as $z=r e^{i \theta}$, it is known as Euler's form. Where,
$\mathrm{r}=|\mathrm{Z}| \quad \theta=\arg (\mathrm{Z})$

5. SOME IMPORTANT PROPERTIES

1. $\overline{(\bar{z})}=z$
2. $z+\bar{z}=2 \operatorname{Re}(z)$
3. $z-\bar{z}=2 i \operatorname{Im}(z)$
4. $\overline{\mathrm{z}_{1}+\mathrm{Z}_{2}}=\overline{\mathrm{Z}}_{1}+\overline{\mathrm{Z}}_{2}$
5. $\overline{\mathrm{Z}_{1} \mathrm{Z}_{2}}=\overline{\mathrm{Z}}_{1} \cdot \overline{\mathrm{Z}}_{2}$
6. $|\mathrm{z}|=0 \Rightarrow \mathrm{z}=0$
7. $z \cdot \bar{z}=|z|^{2}$
8. $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| ;\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
9. $|\bar{z}|=|z|=|-z|$
10. $\left|z_{1} \pm z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \pm 2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
11. $\left|z_{1}+z_{2}\right| \leqslant\left|z_{1}\right|+\left|z_{2}\right| \quad$ (Triangle Inequality)
12. $\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right| \geqslant \| \mathrm{z}_{1}\left|-\left|\mathrm{z}_{2}\right|\right|$
13. $\left|\mathrm{az}_{1}-\mathrm{bz}_{2}\right|^{2}+\left|\mathrm{bz}_{1}+\mathrm{az}_{2}\right|^{2}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\left|\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}_{2}\right|^{2}\right)$
14. $\operatorname{amp}\left(\mathrm{z}_{1} \cdot \mathrm{z}_{2}\right)=\mathrm{amp} \mathrm{z}_{1}+\mathrm{ampz}_{2}+2 \mathrm{k} \pi ; \mathrm{k} \in \mathrm{I}$
15. $\operatorname{amp}\left(\frac{\mathrm{y}_{0}}{\mathrm{y}_{1}}\right)=\operatorname{amp} \mathrm{z}_{1}-\operatorname{amp} z_{2}+2 \mathrm{k} \pi ; \mathrm{k} \in \mathrm{I}$
16. $\operatorname{amp}\left(z^{n}\right)=n \operatorname{amp}(z)+2 k \pi ; k \in I$

6. DE-MOIVRE'S THEOREM

Statement: $\cos n \theta+i \sin n \theta$ is the value or one of the values of $(\cos \theta+i \sin \theta)^{n}$ according as if ' n ' is integer or a rational number. The theorem is very useful in determining the roots of any complex quantity.

7. CUBE ROOT OF UNITY

Roots of the equation $x^{3}=1$ are called cube roots of unity. $\$$
Roots of the equation $x^{3}=1$ are called cube roots of unity.

$$
\begin{aligned}
& x^{3}-1=0 \\
& (x-1)\left(x^{2}+x+1\right)=0 \\
& x=1 \quad \text { or } \quad x^{2}+x+1=0 \\
& \text { i.e } x=\underbrace{\frac{-1+\sqrt{3} \mathrm{i}}{2}}_{\mathrm{w}} \text { or } \mathrm{x}=\underbrace{\frac{-1-\sqrt{3} \mathrm{i}}{2}}_{w^{2}}
\end{aligned}
$$

(i) The cube roots of unity are $1, \frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}$.
(ii) $\omega^{3}=1$
(iii) If w is one of the imaginary cube roots of unity then $1+\omega+\omega^{2}=0$.
(iv) In general $1+\omega^{\mathrm{r}}+\omega^{2 \mathrm{r}}=0$; where $\mathrm{r} \in \mathrm{I}$ but is not the multiple of 3 .
(v) In polar form the cube roots of unity are:
$\cos 0+i \sin 0 ; \cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}, \cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$
(vi) The three cube roots of unity when plotted on the argand plane constitute the vertices of an equilateral triangle.
(vii) The following factorisation should be remembered:

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)(a-\omega b)\left(a-\omega^{2} b\right) \\
& x^{2}+x+1=(x-\omega)\left(x-\omega^{2}\right) \\
& a^{3}+b^{3}=(a+b)(a+\omega b)\left(a+\omega^{2} b\right) \\
& a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a+\omega b+\omega^{2} c\right)\left(a+\omega^{2} b+\omega c\right)
\end{aligned}
$$

8. ' n ' nth ROOTS OF UNITY

Solution of equation $x^{n}=1$ is given by,

$$
\begin{array}{ll}
\mathrm{x}=\cos \frac{2 \mathrm{k} \pi}{\mathrm{n}}+\mathrm{i} \sin \frac{2 \mathrm{k} \pi}{\mathrm{n}} & ; \mathrm{k}=0,1,2, \ldots, \mathrm{n}-1 \\
=\mathrm{e}^{\mathrm{i}\left(\frac{2 \mathrm{k} \pi}{\mathrm{n}}\right)} & ; \mathrm{k}=0,1, \ldots ., \mathrm{n}-1
\end{array}
$$

Note:

1. We may take any n consecutive integral values of k to get $n^{\prime} n^{\text {th }}$ roots of unity.
2. Sum of ' ' n ' $n^{\text {th }}$ roots of unity is zero, $n \in N$

LIVE ONLINE TUTORING
3. The points represented by ' n ', nth roots of unity are located at the vertices of regular polygon of n sides inscribed in a unit circle, centred at origin and one vertex being one positive real axis.

Properties:

If $1, \alpha_{1}, \alpha_{2}, \alpha_{3} \ldots \alpha_{n-1}$ are the $\mathrm{n}, \mathrm{n}^{\text {th }}$ root of unity then:
(i) They are in G.P. with common ratio $\mathrm{e}^{\mathrm{i}(2 \pi / \mathrm{n})}$
(ii) $1^{p}+\alpha_{0}^{0}+\alpha_{-} 1^{\wedge \wedge}+\ldots .+\alpha _m-0^{\wedge \wedge \circ}=\left[\begin{array}{l}0, \text { if } p \neq k^{n} \\ n, \text { if } p=k n\end{array}\right.$ where $k \in Z$
(iii) $\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \ldots . .\left(1-\alpha_{n-1}\right)=\mathrm{n}$
(iv) $\left(1+\alpha_{1}\right)\left(1+\alpha_{2}\right) \ldots \ldots\left(1+\alpha_{n-1}\right)=\left[\begin{array}{l}0, \text { if } \mathrm{n} \text { is even } \\ 1, \text { if } \mathrm{n} \text { is odd }\end{array}\right.$
(v) $1 . \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \ldots \ldots \ldots . \alpha_{n-1}=\left[\begin{array}{c}-1, \text { if } n \text { is even } \\ 1, \text { if } n \text { is odd }\end{array}\right.$

Note:

(i) $\cos \theta+\cos 2 \theta+\cos 3 \theta+\ldots+\cos n \theta=\frac{\sin (n \theta / 2)}{\sin (\theta / 2)} \cos \left(\frac{n+1}{2}\right) \theta$
(ii) $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta=\frac{\sin (n \theta / 2)}{\sin (\theta / 2)} \sin \left(\frac{n+1}{2}\right) \theta$.

9. SQUARE ROOT OF COMPLEX NUMBER

Let $\mathrm{x}+\mathrm{iy}=\sqrt{\mathrm{a}+\mathrm{ib}}$, Squaring both sides, we get
$(x+i y)^{2}=a+i b$
i.e., $x^{2}-y^{2}=a, 2 x y=b$

Solving these equations, we get square roots of z.

10. LOCI IN COMPLEX PLANE

(i) $\left|z-z_{0}\right|=$ a represents the circumference of a circle, centred at z_{o}, radius a.
(ii) $\left|z-z_{0}\right|<$ a represents the interior of the circle.
(iii) $\left|z-z_{0}\right|>$ a represents the exterior of this circle.
(iv) $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ represents \perp bisector of segment with endpoints z_{1} and z_{2}.
(v) $\left|\frac{-z_{1}}{-z_{2}}\right|=k$ represents: $\left\{\begin{array}{l}\text { circle, } \mathrm{k} \neq 1 \\ \perp \text { bisector, } \mathrm{k}=1\end{array}\right\}$
(vi) $\arg (\mathrm{z})=\theta$ is a ray starting from the origin (excluded) inclined at an $\angle \theta$ with a real axis.
(vii) Circle described on line segment joining z_{1} and z_{2} as diameter is:
$\left(z-z_{1}\right)\left(\bar{z}-\bar{z}_{2}\right)+\left(z-z_{2}\right)\left(\bar{z}-\bar{z}_{1}\right)=0$
(viii) If z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle where z_{0} is its circumcentre then
(a) $\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}+\frac{1}{z_{1}-z_{2}}=0$
(b) $z_{0}^{1}+z_{1}^{1}+z_{2}^{1}-z_{1} z_{2}-z_{2} z_{3}-z_{3} z_{1}=0$
(c) $z_{0}^{1}+z_{1}^{1}+z_{2}^{1}=3 z_{1}^{1}$
(ix) If A, B, C, D are four points representing the complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$ then
$A B \| C D$ if $\frac{Z_{4}-Z_{3}}{Z_{2}-z_{1}}$ is purely real ;
$\mathrm{AB} \perp \mathrm{CD}$ if $\frac{\mathrm{z}_{4}-\mathrm{z}_{3}}{\mathrm{z}_{2}-\mathrm{z}_{1}}$ is purely imaginary

11. VECTORIAL REPRESENTATION OF A COMPLEX

Every complex number can be considered as if it is the position vector of that point. If the point P represents the complex number z then, $\overrightarrow{O P}=z$ and $|\overrightarrow{O P}|=|z|$.

Note:

(i) If $\overrightarrow{\mathrm{OP}}=\mathrm{z}=\mathrm{re}^{\mathrm{i} \theta}$ then $\overrightarrow{\mathrm{OQ}}=\mathrm{z}_{1}=\mathrm{re}{ }^{\mathrm{i}(\theta+\phi)}=\mathrm{z} \cdot \mathrm{e}^{\mathrm{i} \phi}$.

If $\overrightarrow{\mathrm{OP}}$ and $\overrightarrow{\mathrm{OQ}}$ are of unequal magnitude, then
$\mathrm{OQ}=\mathrm{OPe}^{\mathrm{i} \phi}$
(ii) If z_{1}, z_{2} and z_{3} are three vertices of a triangle ABC described in the counterclockwise sense, then
$\frac{z_{3}-z}{z_{2}-z}=\frac{A C}{A B}(\cos \alpha+i \sin \alpha)=\frac{A C}{A B} \cdot e^{i \alpha}=\frac{\left|z_{3}-z_{1}\right|}{\left|z_{2}-z_{1}\right|} \cdot e^{i \alpha}$

12. SOME IMPORTANT RESULTS

(i) If z_{1} and z_{2} are two complex numbers, then the distance between z_{1} and z_{2} is $\left|z_{2}-z_{1}\right|$.
(ii) Segment Joining points $\mathrm{A}\left(\mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{z}_{2}\right)$ is divided by point $\mathrm{P}(\mathrm{z})$ in the ratio $\mathrm{m}_{1}: \mathrm{m}_{2}$ then $\mathrm{z}=\frac{\mathrm{m}_{1} \mathrm{z}_{2}+\mathrm{m}_{2} \mathrm{z}}{\mathrm{m}_{1}+\mathrm{m}_{2}}, \mathrm{~m}_{1}$ and m_{2} are real.
(iii) The equation of the line joining z_{1} and z_{2} is given by
$\left|\begin{array}{ll}z & \bar{z} \\ z & \bar{z} \\ z_{2} & \bar{z}_{2}\end{array}\right|=0$ (non parametric form) Or
$\frac{z-z}{\bar{z}-\bar{z}}=\frac{z-z_{2}}{\bar{z}-\bar{z}_{2}}$
(iv) $\bar{a} z+a \bar{z}+b=0$ represents a general form of line.
(v) The general eqn. of circle is:
$z \bar{z}+a \bar{z}+\bar{a} z+b=0 \quad$ (where b is real no.).
Centre : ($-a$) and radius,
$\sqrt{|a|^{2}-b}=\sqrt{a \bar{a}-b}$.
(vi) Circle described on line segment joining z_{1} and z_{2} as diameter is:
$\left(z-z_{1}\right)\left(\bar{z}-\bar{z}_{2}\right)+\left(z-z_{2}\right)\left(\bar{z}-\bar{z}_{1}\right)=0$
(vii) Four pts. $z_{1}, z_{2}, z_{3}, z_{4}$ in anticlockwise order will be concyclic, if and only if

LIVE ONLINE TUTORING
$\theta=\arg \cdot\left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right)=\arg \left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)$
$\Rightarrow \arg \left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right)-\arg \cdot\left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)=2 n \pi ;(n \in I)$
$\Rightarrow \arg \left[\left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right)\left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)\right]=2 n \pi$
$\Rightarrow\left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right) \times\left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)$ is real and positive.
(viii) If z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle where z_{0} is its circumcentre then
(a) $\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}+\frac{1}{z_{1}-z_{2}}=0$
(b) $z_{0}^{1}+z_{1}^{1}+z_{2}^{1}-z_{1} z_{2}-z_{2} z_{3}-z_{3} z_{1}=0$
(c) $\mathrm{z}_{0}^{1}+\mathrm{z}_{1}^{1}+\mathrm{z}_{2}^{1}=3 \mathrm{z}^{1}$
(ix) If A, B, C and D are four points representing the complex numbers z_{1}, z_{2}, z_{3} and z_{4} then
$\mathrm{AB} \| \mathrm{CD}$ if $\frac{z_{4}-z_{3}}{z_{2}-z_{1}}$ is purely real;
$A B \perp C D$ if $\frac{z_{4}-z_{3}}{z_{2}-z_{1}}$ is purely imaginary.
(x) Two points $P\left(z_{1}\right)$ and $Q\left(z_{2}\right)$ lie on the same side or opposite side of the line $\bar{a} z+a \bar{z}+b$ accordingly as $\bar{a} z_{1}+a \bar{z}_{1}+b$ and $\bar{a} z_{2}+a \bar{z}_{2}+b$ have same sign or opposite sign.

Important Identities

(i) $\mathrm{x}^{2}+\mathrm{x}+1=(\mathrm{x}-\omega)\left(\mathrm{x}-\omega^{2}\right)$
(ii) $\mathrm{x}^{2}-\mathrm{x}+1=(\mathrm{x}+\omega)\left(\mathrm{x}+\omega^{2}\right)$
(iii) $x^{2}+x y+y^{2}=(x-y \omega)\left(x-y \omega^{2}\right)$
(iv) $x^{2}-x y+y^{2}=(x+\omega y)\left(x+y \omega^{2}\right)$
(v) $x^{2}+y^{2}=(x+i y)(x-i y)$
(vi) $x^{3}+y^{3}=(x+y)(x+y \omega)\left(x+y \omega^{2}\right)$
(vii) $x^{3}-y^{3}=(x-y)(x-y \omega)\left(x-y \omega^{2}\right)$
(viii) $x^{2}+y^{2}+z^{2}-x y-y z-z x=\left(x+y \omega+z \omega^{2}\right)\left(x+y \omega^{2}+z \omega\right)$
or $\quad\left(\mathrm{x} \omega+\mathrm{y} \omega^{2}+\mathrm{z}\right)\left(\mathrm{x} \omega^{2}+\mathrm{y} \omega+\mathrm{z}\right)$
or $\quad\left(\mathrm{x} \omega+\mathrm{y}+\mathrm{z} \omega^{2}\right)\left(\mathrm{x} \omega^{2}+\mathrm{y}+\mathrm{z} \omega\right)$
(ix) $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+\omega y+\omega^{2} z\right)\left(\mathrm{x}+\omega^{2} \mathrm{y}+\omega \mathrm{z}\right)$

1. QUADRATIC EXPRESSION

The standard form of a quadratic expression in x is, $f(\mathrm{x})=a x^{2}+b x+c$, where $a, b, c \in R$ and $a \neq 0$. General form of a quadratic equation in x is, $a x^{2}+b x+c=0$, where $a, b, c \in R$ and $a \neq 0$.

2. ROOTS OF QUADRATIC EQUATION

(a) The solution of the quadratic equation,

$a x^{2}+b x+c=0$ is given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
The expression $D=b^{2}-4 a c$ is called the discriminant of the quadratic equation.
(b) If α and β are the roots of the quadratic equation $a x^{2}+b x+c=0$, then
(i) $\alpha+\beta=\frac{-\mathrm{b}}{a}$
(ii) $\alpha \beta=\frac{\mathrm{c}}{a}$
(iii) $|\alpha-\beta|=\frac{\sqrt{D}}{|\mathrm{a}|}$
(c) A quadratic equation whose roots are α and β is $(x-\alpha)(x-\beta)=0$ i.e.,

$$
\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta=0 \quad \text { i.e., }
$$

$x^{2}-($ sum of roots $) x+$ product of roots $=0$

Note:

$$
\begin{aligned}
y=\left(a x^{2}+b x+c\right) & \equiv a(x-\alpha)(x-\beta) \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a}
\end{aligned}
$$

3. NATURE OF ROOTS

(a) Consider the quadratic equation $a x^{2}+b x+c=0$ where $\mathbf{a}, a, b, c \in R$ and $a \neq 0$ then;
(i) $\mathrm{D}>0 \Leftrightarrow$ roots are real and distinct (unequal).
(ii) $\mathrm{D}=0 \Leftrightarrow$ roots are real and coincident (equal).
(iii) $\mathrm{D}<0 \Leftrightarrow$ roots are imaginary.
(iv) If $\mathrm{p}+\mathrm{iq}$ is one root of a quadratic equation, then the other must be the conjugate $p-i q$ and vice versa. $(\mathrm{p}, \mathrm{q} \in \mathrm{R}$ and $\mathrm{i}=\sqrt{-1})$.
(b) Consider the quadratic equation $a x^{2}+b x+c=0$ where $a, b, c \in Q$ and $a \neq 0$ then;
(i) If $\mathrm{D}>0$ and is a perfect square, then roots are rational and unequal.
(ii) If $\alpha=p+\sqrt{q}$ is one root in this case, (where p is rational and \sqrt{q} is a surd) then the other root must be the conjugate of it i.e., $\beta=p-\sqrt{q}$ and vice versa.

Note:

Remember that a quadratic equation cannot have three different roots and if it has, it becomes an identity.

4. GRAPH OF QUADRATIC EQUATION

Consider the quadratic expression, $\mathrm{y}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, a \neq 0$ and $a, b, c \in R$ then;
(i) The graph between x, y is always a parabola. If $a>0$ then the shape of the parabola is concave upwards and if $a<0$ then the shape of the parabola is concave downwards.
(ii) $y>0 \forall x \in R$, only if $a>0$ and $\mathrm{D}<0$
(iii) $\mathrm{y}<0 \forall \mathrm{x} \in \mathrm{R}$, only if $\mathrm{a}<0$ and $\mathrm{D}<0$

5. SOLUTION OF QUADRATIC INEQUALITIES

$a x^{2}+b x+c>0(a \neq 0)$
(i) If $D>0$, then the equation $a x^{2}+b x+c=0$ has two different roots $\left(\mathrm{x}_{1}<\mathrm{x}_{2}\right)$

Then $\mathrm{a}>0 \Rightarrow \mathrm{x} \in\left(-\infty, \mathrm{x}_{1}\right) \cup\left(\mathrm{x}_{2}, \infty\right)$
$\mathrm{a}<0 \Rightarrow \mathrm{x} \in\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$

(ii) Inequalities of the form $\frac{P(x)}{\mathrm{Q}(\mathrm{x})} \gtrless 0$ can be quickly solved using the method of intervals (wavy curve).

6. MAXIMUM AND MINIMUM VALUE OF QUADRATIC EQUATION

Maximum and minimum value of $y=a x^{2}+b x+c$ occurs at $x=-\left(\frac{b}{2 a}\right)$ according as:
For $a>0$, we have:
$y \in\left[\frac{4 a c-b^{2}}{4 a}, \infty\right)$

$$
-\frac{b}{2 a},-\frac{D}{2 a}
$$

LIVE ONLINE TUTORING
$y_{\text {min }}=\frac{-D}{4 a}$ at $x=\frac{-b}{2 a}$, and $y_{\text {max }} \rightarrow \infty$
For $a<0$, we have:
$y \in\left(-\infty, \frac{4 a c-b^{2}}{4 a}\right]$

$$
y_{\max }=\frac{-D}{4 a} \text { at } x=\frac{-b}{2 a} \text {, and } \mathrm{y}_{\min } \rightarrow \infty
$$

7. THEORY OF EQUATIONS

If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{n}$ are the roots of the $\mathrm{n}^{\text {th }}$ degree polynomial equation:
$f(\mathrm{x})=\mathrm{a}_{0} \mathrm{x}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{a}_{2} \mathrm{x}^{\mathrm{n}-2}+\ldots \ldots+\mathrm{a}_{\mathrm{n}-1} \mathrm{x}+\mathrm{a}_{\mathrm{n}}=0$
where $a_{0}, a_{1}, \ldots \ldots a_{n}$ are all real and $a_{0} \neq 0$
Then,
$\sum \alpha_{1}=-\frac{\mathrm{a}_{1}}{\mathrm{a}_{0}}$
$\sum \alpha_{1} \alpha_{2}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{0}}$

$$
\sum \alpha_{1} \alpha_{2} \alpha_{3}=-\frac{a_{3}}{a_{0}} ;
$$

........

$$
\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{\mathrm{n}}=(-1)^{\mathrm{n}} \frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{a}_{0}}
$$

8. LOCATION OF ROOTS

Let $f(x)=a x^{2}+b x+c$, where $a>0$ and $a, b, c \in R$
(i) Conditions for both the roots of $f(x)=0$ to be greater than a specified number ' k ' are:
$\mathrm{D} \geqslant 0$ and $f(\mathrm{k})>0$ and $(-\mathrm{b} / 2 \mathrm{a})>\mathrm{k}$
(ii) Conditions for both roots of $f(\mathrm{x})=0$ to lie on either side of the number ' k ' (in other words the number ' k ' lies between the roots of $f(\mathrm{x})=0$ is:
$a f(\mathrm{k})<0$
(iii) Conditions for exactly one root of $f(x)=0$ to lie in the interval $\left(k_{1}, k_{2}\right)$ i.e., $k_{1}<x<k_{2}$ are:
$D>0$ and $f\left(k_{1}\right) \cdot f\left(k_{2}\right)<0$
(iv) Conditions that both the roots of $f(x)=0$ to be confined between the numbers k_{1} and k_{2} are $\left(k_{1}<k_{2}\right)$:
$D \geqslant 0$ and $f\left(k_{1}\right)>0$ and $f\left(k_{2}\right)>0$ and $k_{1}<\left(\frac{-b}{2 a}\right)<k_{2}$

9. MAXIMUM AND MINIMUM VALUES OF RATIONAL NUMBERS

LIVE ONLINE TUTORING
Here we shall find the values attained by a rational expresion of the form $\frac{a_{1} x^{2}+b_{1} x+c_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}$ for real values of x.

10. COMMON FACTORS

(a) Only One Common Root

Let α be the common root of $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, such that $a, a^{\prime} \neq 0$ and a $b^{\prime} \neq a^{\prime} b$. Then, the condition for one common root is:
$\left(c a^{\prime}-c^{\prime} a\right)^{2}=\left(a b^{\prime}-a^{\prime} b\right)\left(b c^{\prime}-b^{\prime} c\right)$

(b) Two common roots

Let α, β be the two common roots of
$a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ such that $\mathrm{a}, \mathrm{a}^{\prime} \neq 0$.
Then, the condition for two common roots is: $\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}=\frac{c}{c^{\prime}}$

11. RESOLUTION INTO TWO LINEAR FACTORS

The condition that a quadratic function $f(x, y)=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c$ may be resolved into two linear factors is that:
$a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$ or,
$\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|=0$

12. FORMATION OF A POLYNOMIAL EQUATION

If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{n}$ are the roots of the $n^{\text {th }}$ degree polynomial equation, then the equation is

$$
\mathrm{x}^{\mathrm{n}}-\mathrm{S}_{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{S}_{2} \mathrm{x}^{\mathrm{n}-2}+\mathrm{S}_{3} \mathrm{x}^{\mathrm{n}-3}+\ldots \ldots+(-1)^{\mathrm{n}} \mathrm{~S}_{\mathrm{n}}=0
$$

where S_{k} denotes the sum of the products of roots taken k at a time.

Particular Cases

(a) Quadratic Equation: If α, β be the roots the quadratic equation, then the equation is :

$$
\mathrm{x}^{2}-\mathrm{S}_{1} \mathrm{x}+\mathrm{S}_{2}=0 \quad \text { i.e. } \quad \mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta=0
$$

(b) Cubic Equation: If α, β, γ be the roots the cubic equation, then the equation is :

$$
\begin{aligned}
& \mathrm{x}^{3}-\mathrm{S}_{1} \mathrm{x}^{2}+\mathrm{S}_{2} \mathrm{x}-\mathrm{S}_{3}=0 \quad \text { i.e } \\
& x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma=0
\end{aligned}
$$

(i) If α is a root of equation $f(x)=0$, the polynomial $f(x)$ is exactly divisible by $(\mathrm{x}-\alpha)$. In other words, $(x-\alpha)$ is a factor of $f(x)$ and conversely.
(ii) Every equation of nth degree ($n \geq 1$) has exactly n roots $\backslash \&$ if the equation has more than n roots, it is an identity.

13. TRANSFORMATION OF EQUATIONS

(i) To obtain an equation whose roots are reciprocals of the roots of a given equation, it is obtained by replacing x by $1 / x$ in the given equation.
(ii) Transformation of an equation to another equation whose roots are negative of the roots of a given equation-replace x by -x .
(iii) Transformation of an equation to another equation whose roots are square of the roots of a given equation-replace x by $\sqrt{\mathrm{x}}$.
(iv) Transformation of an equation to another equation whose roots are cubes of the roots of a given equation-replace x by $x^{1 / 3}$.

