

Revision Notes

Class-12 Mathematics

Chapter 1 – Relations and Functions

Relation

- It defines **relationship** between two set of values let say from set A to set B.
- Set A is then called domain and set B is then called codomain.
- If $(a, b) \in R$, it shows that a is related to b under the relation R

Types of **Relations**

- **1. Empty Relation:**
- In this there is **no** relation between any element of a set.
- It is also known as void relation
- For example: if set A is $\{2, 4, 6\}$ then an empty relation can be R = $\{x, y\}$ where $x + y > 11$

2. Universal Relation:

- In this **each element** of a set is **related** to **every element** of that set.
- For example: if set A is $\{2, 4, 6\}$ then a universal relation can be

 $R = \{x, y\}$ where $x + y > 0$

3. Trivial Relation: Empty relation and universal relation is sometimes called trivial relation.

4. Reflexive Relation:

- In this each element of set (say) A is related to itself i.e., a relation R in set A is called **reflexive** if $(a,a) \in R$ for every $a \in A$.
- For example: if Set A = $\{1, 2, 3\}$ then relation

 $R = \{(1,1),(1,2),(2,2),(2,1),(3,3)\}\;$ is reflexive since each element of set A is related to itself.

5. Symmetric Relation:

- A relation R in set A is called **symmetric** if $(a, b) \in R$ and $(b,a) \in R$ for every $a, b \in A$
- For example: if Set A = $\{1, 2, 3\}$ then relation $R = \{(1, 2), (2, 1), (2, 3), (3, 2), (3, 1), (1, 3)\}$ is symmetric.

6. Transitive Relation:

- A relation R in set A is called **transitive** if $(a, b) \in R$ and $(b, c) \in R$ then (a, c) also belongs to R for every $a, b, c \in A$
- For example: if Set $A = \{1, 2, 3\}$ then relation $R = \{(1, 2), (2, 3), (1, 3), (2, 3), (3, 2), (2, 2)\}$ is transitive.

7. Equivalence Relation:

- A relation R on a set A is equivalence if R is **reflexive, symmetric and transitive.**
- For example: $R = \{(L_1, L_2) : \text{line } L_1 \text{ is parallel line } L_2\}$,
	- This relation is reflexive because every line is parallel to itself Symmetric because if L_1 parallel to L_2 then L_2 is also parallel to L_1 Transitive because if L_1 parallel to L_2 and L_2 parallel to L_3 then L_1 is also parallel to L³

Functions

A function f from a set A to a set B is a rule which associates each element of set A to a **unique element** of set B.

● **Set A is domain** and **set B is codomain** of the function

- **Range** is the set of all possible resulting value given by the function.
- For example: x^2 is a function where values of x will be the domain and value given by x^2 is range.

Types of Function:

- **1. One-One Function:**
- A function f from set A to set B is called one-one function if no two distinct elements of A have the same image in B.
- Mathematically, a function f from set A to set B if $f(x) = f(y)$ implies that $x = y$ for all $x, y \in A$.
- One-one function is also called an injective **function**.
- For example: If a function f from a set of real number to a set of real number, then $f(x) = 2x$ is a one-one function.

2. Onto Function:

- A function f from set A to set B is called onto function if each element of set B has a preimage in set A or range of function f is equal to the codomain i.e., set B.
- Onto function is also called **surjective function**.
- For example: If a function f from a set of natural number to a set of n

Natural number, then $f(x) = x - 1$ is onto function.

3. Bijective Function:

- A function f from set A to set B is called bijective function if it is **both one-one function and onto function.**
- For example: If a function f from a set of real number to a set of real number, then $f(x) = 2x$ is one-one function and onto function.

Composition of function and invertible function

- composite of g and f, written as $g \circ f$ is a function from A to C such • **Composition of function:** Let $f : A \rightarrow B$ and $g : B \rightarrow C$ then the that $(g \circ f)(a) = g(f(a))$ for all $a \in A$. (Not in the current syllabus)
- **• Properties of composition of function:** Let $f : A \rightarrow B$, $g : B \rightarrow C$ and $h:C\rightarrow A$ then

- **a.** Composition is **associative** i.e., $h(gf) = (hg)f$
- **b.** If f and g are one-one then $g \circ f$ is also **one-one**
- **c.** If f and g are onto then $g \circ f$ is also **onto**
- **d. Invertible function:** If f is bijective then there is a function $f^{-1}:B \to A$ such that $(f^{-1}f)(a) = a$ for all $a \in A$ and $(f^{-1}f)(b) = b$ for all $b \in B$
- f ¹ is the **inverse** of the function f and is **always unique**.

Binary Operations

- A binary operation are **mathematical operations** such as addition, subtraction, multiplication and division performed between two operands.
- A binary operation on a set A is defined as operations performed between two elements of set A and the result also belongs to set A. Then set A is called **binary composition**.
- It is denoted by $*$
- For example: Binary addition of real numbers is a binary composition
- since on adding two real number the result will always a real number.

Properties of Binary Composition:

- A binary operation $*$ on the set X is **commutative**, i.e., $a * b = b * a$, for every $a, b \in X$
- A binary operation * on the set X is **associative**, i.e., $a*(b*c) = (a*b)*c$, for every $a,b,c \in X$
- There exists **identity** for the binary operation *: $A \times A \rightarrow A$, i.e., $a^*e = e^*a = a$ for all $a.e \in A$
- A binary operation *: $A \times A \rightarrow A$ is said to be **invertible** with respect to the operation * if there exist an element b in A such that $a * b = b * a = e$

e is identity element in A then \overline{b} is the inverse of a and is denoted by a^{-1} . .