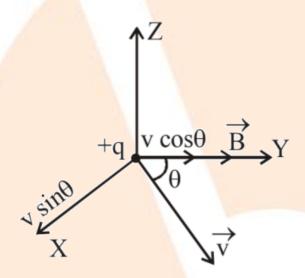


Revision Notes

Class - 12 Physics

Chapter 4 - Moving Charges And Magnetism

1. Force on a moving charge: The source of magnetic field is a moving charge.



Suppose a positive charge q is in motion in a uniform magnetic field B with velocity \vec{v} .

n

$$\therefore F \alpha q B v sin \theta \Rightarrow F = kq B v sin \theta \left[k = constant \right]$$

Where in S.I. system, k = 1

$$\therefore$$
 F=qBsin θ and \overrightarrow{F} =q $\begin{pmatrix} \overrightarrow{v} \times \overrightarrow{B} \end{pmatrix}$

2. Magnetic field strength (\overrightarrow{B}) :

We can see that in the equation, $F = qBvsin\theta$, if q = 1, v = 1,

$$\sin \theta = 1$$
 i.e. $\theta = 90^{\circ}$ then $F = B$.

Therefore magnetic field strength can be known as the force felt by a unit charge in motion with unit velocity perpendicular to the direction of magnetic field.

There are some special cases for this:

(1) If
$$\theta = 0^{\circ}$$
 or 180° , $\sin \theta = 0$
 $\therefore F = 0$

A charged particle which is in motion parallel to the magnetic field, will be not experiencing any force.

(2) When
$$v = 0, F = 0$$

At rest, a charged particle in a magnetic field will be not experiencing any force.

(3) When
$$\theta = 90^{\circ}$$
, $\sin \theta = 1$ then the force will be maximum $F_{\text{max}} = \text{qvB}$

A charged particle in motion perpendicular to the magnetic field will be experiencing maximum force.

3. S.I. unit of magnetic field intensity: The S.I unit has been found to be tesla (T).

$$B = \frac{F}{qvsin\theta}$$

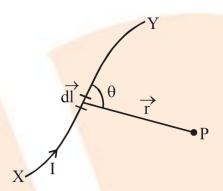
When
$$q = 1C$$
, $v = 1m/s$, $\theta = 90^{\circ}$ That is, $\sin\theta = 1$ and $F = 1N$
Then $B = 1T$.

At a point, the strength of magnetic field can be called as 1T if a charge of 1C which have a velocity of 1 m/s while in motion at right angle to a magnetic field experiences a force of 1N at that point.

- **4. Biot-Savart's law:** The strength of magnetic flux density or magnetic field at a point P (dB) because of the current element dl will be dependent on,
 - (i) dBαI
 - (ii) $dB \alpha dl$

(iii) dB α sinθ

(iv)
$$dB\alpha \frac{1}{r^2}$$
,



When we combine them, $dB\alpha \frac{Idl\sin\theta}{r^2} \Rightarrow dB = k \frac{Idl\sin\theta}{r^2}$ [k =

Proportionality constant]

In S.I. units, $k = \frac{\mu_0}{4\pi}$ where μ_0 can be called as permeability of free space.

$$\mu_0 = 4\pi \times 10^{-7} \, \text{TA}^{-1} \text{m}$$

$$\therefore dB = \frac{\mu_0}{4\pi} \frac{Idlsin\theta}{r^2} \text{ and } dB = \frac{\mu_0}{4\pi} I \frac{\left(\overrightarrow{dl} \times \overrightarrow{r}\right)}{r^3}$$

 \overrightarrow{dB} will be perpendicular to the plane containing \overrightarrow{dl} and \overrightarrow{r} and will be directed inwards.

5. Applications of Biot-Savart's law:-

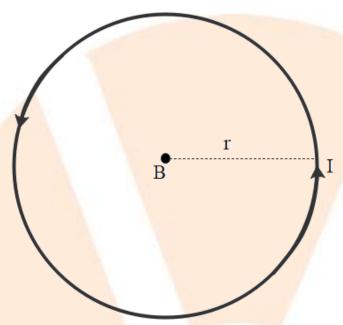
Magnetic field (B) kept at the Centre of a Current Carrying Circular
 Coil of radius r.

$$B = \frac{\mu_0 I}{2r}$$

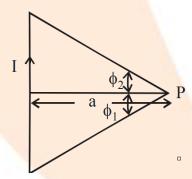
If there are n turns, then the magnetic field at the centre of a circular coil of n turns will be,

$$B = \frac{\mu_0 nI}{2r}$$

Here n will be the number of turns of the coil. I will be the current in the coil and r will be the radius of the coil.



Magnetic field because of a straight conductor carrying current.



$$B = \frac{\mu_0 I}{4 \pi a} \left(\sin \phi_2 + \sin \phi_1 \right)$$

Here a will be the perpendicular distance of the conductor from the point where the field is to the measured.

 $\varphi_1 \, and \, \varphi_2$ will be the angles created by the two ends of the conductor with

the point. In case of an infinitely long conductor, $\phi_1 = \phi_2 = \frac{\pi}{2}$

Class XII Physics <u>www.vedantu.com</u> 4

$$\therefore B = \frac{\mu_0}{4\pi} \cdot \frac{2I}{a}$$

$$\downarrow \phi_1$$

$$\downarrow \phi_2$$

$$\downarrow \phi_2$$

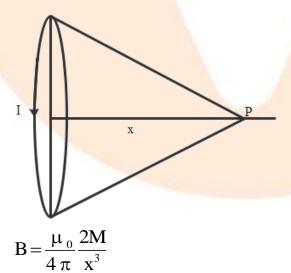
$$\downarrow \phi_2$$

$$\downarrow \phi_2$$

$$\downarrow \phi_3$$

• At a point on the axis, magnetic field of a Circular Coil Carrying Current.

If point P is lying far away from the centre of the coil.

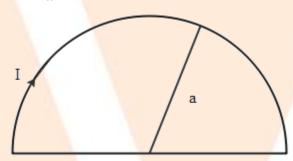


Where M=nIA= magnetic dipole moment of the coil . x be the distance of the point where the field is needed to be measured, n be the number of turns, I

be the current and A be the area of the coil.

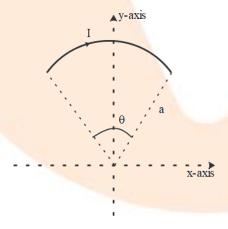
• Magnetic field at the centre of a semi-circular current-carrying conductor will be,

$$\mathbf{B} = \frac{\mu_0 \mathbf{I}}{4a}$$



• Magnetic field at the centre of an arc of circular current-carrying conductor which is subtending an angle 0 at the centre will be,

$$B = \frac{\mu_0 I \theta}{4 \pi a}$$

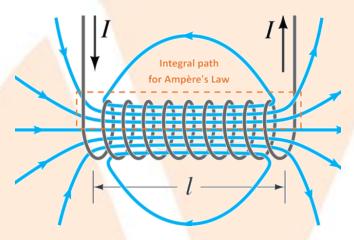


6. Ampere's circuital law:-

Around any closed path in vacuum line integral of magnetic field \vec{B} will be μ_0 times the total current through the closed path. that is, $\vec{\varphi} \vec{B} . \vec{dl} = \mu_0 I$

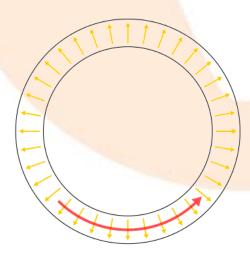
7. Application of Ampere's circuital law:-

(a) Magnetic field because of a current carrying solenoid, $B=\mu_0 nI$



n be the number of turns per unit length of the solenoid. In the edge portion of a short solenoid, $B = \frac{\mu_0 nI}{2}$

(b) Magnetic field because of a toroid or endless solenoid



Top view

$$B=\mu_0 nI$$

8. Motion in uniform electric field of a charged particle:-

Parabola is the path of a charged particle in an electric field.

Equation of the parabola be
$$x^2 = \frac{2mv^2}{qE}y$$

Where x be the width of the electric field.

y be the displacement of the particle from its straight path.

v be the speed of the charged particle.

q be the charge of the particle

E be the electric field intensity.

m be the mass of the particle.

9. In a magnetic field (B) which is uniform, the path of a particle which is charged in motion with a velocity \overrightarrow{v} creating an angle θ with \overrightarrow{B} will be a helix.

$$0 \xrightarrow{\sin \theta} 0$$

$$0 \xrightarrow{\nabla} \cos \theta \longrightarrow B$$

The component of velocity $\cos\theta$ will not be given a force to the charged particle, hence under this velocity in the direction of B, the particle will move forward with a fixed velocity. The other component $\sin\theta$ will create the force $F = qBv\sin\theta$, which will be supplying the needed centripetal force to the charged particle in the motion along a circular path having radius r.

∴ Centripetal force =
$$\frac{m(v\sin\theta)^2}{r}$$
 = Bqvsin θ

$$\therefore v \sin\theta = \frac{Bqr}{m}$$

Angular velocity of rotation =
$$w = \frac{v \sin \theta}{r} = \frac{Bq}{m}$$

Frequency of rotation = $v = \frac{\omega}{2\pi} = \frac{Bq}{2\pi m}$
Time period of revolution = $T = \frac{1}{v} = \frac{2\pi m}{Bq}$

- 10. Cyclotron: This can be defined as a device we use for accelerating and therefore energize the positively charged particle. This can be created by keeping the particle, in an oscillating perpendicular magnetic field and a electric field. The particle will be moving in a circular path.
 - :. Centripetal force = magnetic Lorentz force

$$\Rightarrow \frac{mv^2}{r} = Bqv \Rightarrow \frac{mv}{Bq} = r \leftarrow radius of the circular path$$

Time for travelling a semicircular path =
$$\frac{\pi r}{v} = \frac{\pi m}{Bq} = constant$$
.

When v_0 be the maximum velocity of the particle and r_0 be the maximum radius of its path then we can say that,

$$\frac{mv_0^2}{r_0} = Bqv_0 \Rightarrow v_0 = \frac{Bqr_0}{m}$$

Maximum kinetic energy of the particle

$$= \frac{1}{2} m v_0^2 = \frac{1}{2} m \left(\frac{Bqr_0}{m} \right)^2 \Longrightarrow (K.E.)_{max.} = \frac{B^2 q^2 r_0^2}{2m}$$

Time period of the oscillating electric field \Rightarrow T = $\frac{2\pi m}{Bq}$.

Time period be the independent of the speed and radius.

Cyclotron frequency =
$$v = \frac{1}{T} = \frac{Bq}{2\pi m}$$

Cyclotron angular frequency =
$$\omega_0 = 2\pi v = \frac{Bq}{m}$$

11. Force acting on a current carrying conductor kept in a magnetic field will be,

Class XII Physics <u>www.vedantu.com</u> 9

$$\overrightarrow{F} = I | \overrightarrow{I} \times \overrightarrow{B} |$$
 or $F = IIB \sin \theta$

Here I be the current through the conductor

B be the magnetic field intensity.

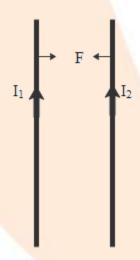
1 be the length of the conductor.

 θ be the angle between the direction of current and magnetic field.

- (i) If $\theta = 0^{\circ}$ or 180° , $\sin\theta \Rightarrow 0 \Rightarrow F = 0$
 - : If a conductor is kept along the magnetic field, no force will be acting on the conductor.
- (ii) If $\theta = 90^{\circ}$, sin $\theta = 1$, F will be maximum. $F_{\text{max}} = IIB$

If the conductor has been kept normal to the magnetic field, it will be experiencing maximum force.

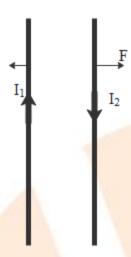
- 12. Force between two parallel current carrying conductors:—
 - (a) If the current will be in similar direction the two conductors will be attracting each other with a force



$$F = \frac{\mu_0}{4\pi} \cdot \frac{2I_1I_2}{r}$$
 per unit length of the conductor

(b) If the current is in opposite direction the two conductors will be repelling each other with an equal force.

Class XII Physics <u>www.vedantu.com</u> 10



(c) S.I. unit of current is 1 ampere. (A).

1A can be defined as the current which on flowing through each of the two parallel uniform linear conductor kept in free space at a distance of 1m from each other creates a force of 2×10^{-7} N/m along their lengths.

13. Torque experienced on a current carrying coil kept in a magnetic field: $\overset{\rightarrow}{\tau} = \vec{M} \times \vec{B} \Longrightarrow \tau = MBsin\alpha = nIBAsin\alpha \text{ where } M \text{ be the magnetic dipole moment of the coil.}$

M = nIA

Where n be the number of turns of the coil.

I be the current through the coil.

B be the intensity of the magnetic field.

A be the area of the coil.

 α will be the angle in between the magnetic field $\begin{pmatrix} \bar{B} \end{pmatrix}$ and normal to the plane of the coil.

Special Cases will be:

- (i) When the coil has been kept parallel to magnetic field $\theta = 0^{\circ}$, $\cos\theta = 1$ then torque will be maximum. $\tau_{max} = nIBA$
- (ii) When the coil is kept perpendicular to magnetic field, $\theta = 90^{\circ}$, $\cos\theta = 0$ $\therefore \tau = 0$

14. Moving coil galvanometer: – This has been on the basis on the principle that if a coil carrying current has been kept in a magnetic field it is experiencing a torque. There is a restoring torque because of the phosphor bronze strip which is bringing back the coil to its normal position. In equilibrium,

Deflecting torque = Restoring torque

 $nIBA=k\theta$ [k = restoring torque/unit twist of the phosphor bronze strip]

$$I = \frac{k}{nBA}\theta = G\theta \text{ where } G = \frac{k}{nBA} = Galvanometer constant$$

$$\therefore I\alpha\theta$$

Current sensitivity of the galvanometer can be defined as the deflection made if the unit current has been passed through the galvanometer.

$$I_s = \frac{\theta}{I} = \frac{nBA}{k}$$

Voltage sensitivity can be explained as the deflection created if unit potential difference has been applied across the galvanometer.

$$V_s = \frac{\theta}{V} = \frac{\theta}{IR} = \frac{nBA}{kR} [R = Resistance of the galvanometer]$$

15. The maximum sensitivity of the galvanometer is having some conditions: The galvanometer has been defined to be sensitive if a small current develops a large deflection.

$$:: \theta = \frac{\text{nBA}}{\text{k}} I$$

 θ will be large if (i) n is large, (ii) B is large (iii) A is large and (iv) k is small.

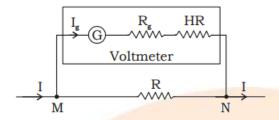
- 16. Conversion of galvanometer into voltmeter and ammeter
 - (a) A galvanometer has been converted to voltmeter by putting a high resistance in series with it.

Total resistance of voltmeter = $R_g + R$ where R_g be the galvonometer resistance.

R be the resistance added in series.

Current through the galvanometer =
$$I_g = \frac{V}{R_g + R}$$

Here V is the potential difference across the voltmeter.

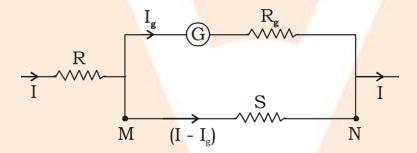


$$\therefore R = \frac{V}{I_g} - G$$

Range of the voltmeter: 0-Vvolt.

(b) A galvanometer can be converted into an ammeter by the connection of a low resistance in parallel with it (shunt)

Shunt = $S = \left(\frac{I_g}{I - I_g}\right) R_g$ where R_g be the galvanometer's resistance.



I be the total current through the ammeter.

I_g be the current through the ammeter.

Effective resistance of the ammeter will be,

$$R = \frac{R_g}{R_g + S}$$

The range of the ammeter will be O—IA. An ideal ammeter will be having zero resistance.