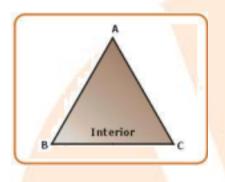


Revision Notes

Class - 9 Maths

Chapter 9 - Areas of Parallelograms and Triangles

Definition of triangle:



A figure in two dimensions, constituting three lines and corners is called a triangle.

Properties of a triangle:

- A triangle is the polygon having least number of sides.
- It is a closed figure in two dimensions formed by **three** line segments and corners thus, it occupies area **bounded** within the sides.

As triangle is the simplest polygon, the area of other polygons can be defined by using area of finite sets of triangles. For example: A hexagon is made up of two triangular parts thus, the area of a hexagon is the union of two triangular regions.

1	
5	

Definition of unit area:

Area enclosed by a figure having sides of unit length is called unit area. It is generally represented as square units and is a positive real number

Notation of area of a polygon:

The area of a polygonal figure A is denoted by ar(A). And in meters, it is denoted by m^2 .

Area axioms

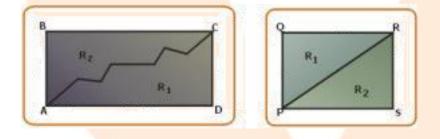
(a) **Congruent area axiom:**

If $\triangle ABC \cong \triangle PQR$ then area of triangle ABC = Area of triangle PQR.

(b) Area monotone axiom:

If R_1 and R_2 two polygonal regions such that $R_1 \subset R_2$ area of $R_1 \leq R_2$.

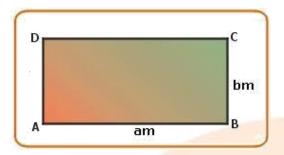
(c) Area addition axiom



If R_1 and R_2 are two polygonal whose intersection is either a finite number of line segments or a single point and $R = R_1 + R_2$ then

 $ar(R_0) = ar(R_1) + ar(R_2)$. In figs (i) the region is divided into two regions R_1 and R_2 .

Area of a rectangular region

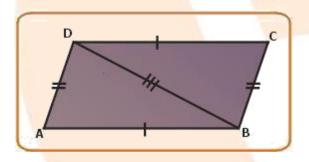


Given that AB = a metres and AD = b metres, hence ar (ABCD) = ab sq. m. (Using addition area axiom)

The<mark>orem 1</mark>

Statement:

Diagonals of a parallelogram divides it into two triangles of equal area.



Given:

ABCD is a parallelogram. AC is one of the diagonals of the parallelogram ABCD.

To prove:

ar(ABC) = ar(DBC)

Proof:

In triangles ABD and DBC,

AB = DC (Opposite sides of parallelogram)

AD = BC (Opposite sides of parallelogram)

BD = BD (Common side)

(Area congruency axiom)

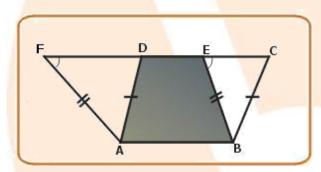
Hence, $ABC \cong DBC$ (SSS congruency)

ar(ABC) = ar(DBC) (Using congruent area axiom)

Theorem 2

Statement:

Parallelograms on the same base and between the same parallel lines are equal in area.



Given:

ABCD and ABEF are two parallelograms having same base AB and same parallels AB and CF.

To prove:

Area of parallelogram ABCD = ABEF

Proof:

 $ar(||^m ABCD) = ar(ABED) + ar(EBC) \dots (1)$ (area addition axiom)

 $ar(||^m ABEF) = ar(ABED) + ar(AFD)$ (2) (area addition axiom)

Now in triangles EBC and AFD,

AF = BE (Opposite sides of a parallelogram)

AD = BC (Opposite sides of a parallelogram)

Angle AFD = BEC (AB || BE and FC is a transversal)

Hence are corresponding angles.

EF = AB = CD

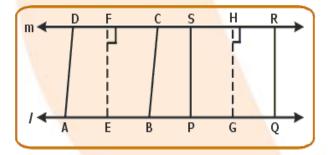
EF - DE = CD - DEi.e., FD = EC

Triangle $EBC \cong AFD$ (SAS congruency condition)

ar(EBC) = ar(AFD) (Area congruency condition)

 $ar(||^{m} ABCD) = ar(||^{m} ABCD)$ From (1), (2) and (3),

Corollary Statement:



Parallelograms on equal bases and between the same parallels are equal in area.

Given: $||^m$ ABCD and $||^m$ PQRS are between the same parallels 1 and m such that AB = PQ (equal bases).

To prove: $ar(||^m ABCD) = ar(||^m PQRS)$.

Construction:

Draw the altitude EF and GH.

Proof:

 $1 \parallel m$ (From given data)

EF = GH (perpendicular distance between the same parallels)

 $\operatorname{ar}(||^{m} ABCD) = AB \times EF$

 $ar(||^m PQRS) = PQ \times GH$ (area of a = base x alr)

Since AB = GH (given)

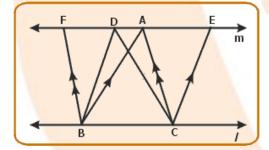
and EF = GH(construction)

Hence, $ar(||^m ABCD) = ar(||^m PQRS)$

Theorem 3

Statement:

Triangles on the same base and between the same parallels are equal in area.



Given:

Triangles ABC and DBC stand on the same BC and between the same parallels 1 and m.

To prove:

ar(ABC) = ar(DBC)

Construction:

 $CE \parallel AB$ and $BF \parallel CA$

Proof:

 $||^{m}$ ABCE and $||^{m}$ DCBF has same base BC and lies between the same parallels 1 and m.

 $\parallel^m ABCE = \parallel^m DCBF \dots (1)$

AC is a diagonal of $||^m$ ABCE which divides the parallelogram into two triangles of equal areas.

Similarly, we can prove that

 $\operatorname{ar}(\operatorname{BCD}) = \frac{1}{2}\operatorname{ar}(||^{m} \operatorname{DCBF})$

From (1), (2) and (3), we can write

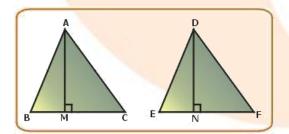
ar(ABC) = ar(DBC)

Hence the theorem is proved.

Theorem 4

Statement:

Triangles of equal areas, having one side of one of the either triangles equal to one side of the other, have their corresponding altitudes equal.



Given:

Two triangles ABC and DEF are such that:

- (i) ar(ABC) = ar(DEF)
- (ii) BC = EF

AM and DN are altitudes of triangle ABC and triangle DEF respectively.

To prove:

AM = DN

Proof:

In triangle ABC, AM is the altitude, BC is the base.

$$\Delta ABC = \frac{1}{2} \times BC \times AM$$

In ΔDEF , DN is the altitude and EF is the base.

$$\Delta DEF = \frac{1}{2} \times EF \times DN$$

$$\frac{1}{2} \times BC \times AM = \frac{1}{2} \times EF \times DN$$

Also BC = EF (given)
¹/₂ AM = ¹/₂ DN
i.e., AM = DN.

Hence the theorem is proved.