Sphere Formulas - Surface Area of a Sphere Formula
Some of the important formulas related to spheres are listed below.
Diameter, d = 2r
Surface area, \[SA = 4\pi {r^2}\]
Volume, \[V = \frac{{4\pi }}{3}{r^3}\]
Let’s look at an example to see how to use these formulas!
Question: Find the surface area of a sphere whose volume is 38808 cm3.
Solution:
\[V = \frac{{4\pi }}{3}{r^3} = 38808 \Rightarrow \frac{4}{3} \times \frac{{22}}{7} \times {r^3} = 38808 \Rightarrow {r^3} = \frac{{38808 \times 21}}{{88}} = 9261 \Rightarrow r = 21\,\,cm\]
\[SA = 4\pi {r^2} = 4 \times \frac{{22}}{7} \times {21^2} = 4 \times 22 \times 3 \times 21 = 5544\,\,c{m^2}\]
Why don’t you try to solving a problem for practice?
Question: The surface area of a sphere is 616 cm2. Find its volume.
Options:
(a) \[143.34\,c{m^3}\]
(b) \[616.67\,c{m^3}\]
(c) \[437.34\,c{m^3}\]
(d) \[1437.34\,c{m^3}\]
Answer: (d)
Solution:
\[SA = 616\,c{m^2}\]
\[SA = 4\pi {r^2}\, \Rightarrow 4\pi {r^2} = 616 \Rightarrow {r^2} = \frac{{616 \times 7}}{{4 \times 22}} = 49 \Rightarrow r = 7\,cm\]
\[V = \frac{{4\pi }}{3}{r^3} = \frac{4}{3} \times \frac{{22}}{7} \times {7^3} = 1437.34\,c{m^3}\]