Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Concise Mathematics Class 10 ICSE Solutions for Chapter 5 - Quadratic Equations

ffImage
banner
widget title icon
Latest Updates

widget icon
Start Your Preparation Now :
ICSE Class 10 Date Sheet 2025

ICSE Class 10 Mathematics Chapter 5 Selina Concise Solutions - Free PDF Download

Class 10 board tests are a crucial stage in students' lives. It is the stage that requires a decent catch-up on the multitude of ideas since these ideas are the structure point to one's professional life. Also, one of the great subjects in the tenth ICSE is Mathematics. STEM (Science, Technology, Engineering, Mathematics) wannabes should know the graph of their career development relies significantly upon Mathematics. Also, Vedantu will leave no stones unturned for students to dominate in their tests.


Updated ICSE Class 10 Mathematics Chapter 5 - Quadratic Equations Selina Solutions are provided by Vedantu in a step by step method. Selina is the most famous publisher of ICSE textbooks. Studying these solutions by Selina Concise Mathematics Class 10 Solutions which are explained and solved by our subject matter experts will help you in preparing for ICSE exams. Concise Mathematics Class 10 ICSE Solutions can be easily downloaded in the given PDF format. These solutions for Class 10 ICSE will help you to score good marks in ICSE Exams 2019-20.


The updated solutions for Selina textbooks are created in accordance with the latest syllabus. These are provided by Vedantu in a Chapter-wise manner to help the students get a thorough knowledge of all the fundamentals.


There are many books to go through for Class tenth Mathematics ICSE. In any case, since there are many subjects to conceal during your boards. It would be extremely drawn-out and unwieldy to get a handle on through a mix of books. Consequently, Vedantu recommends the important and proposed book that would conceal all ideas and activities according to the Class 10 ICSE question design in Selina Concise. In case students practice all question types from Selina Concise Class 10 Mathematics, then, at that point, it would be simpler to acquire the maximum marks. Vedantu thus accompanies Solutions for Class 10 Mathematics ICSE.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access ICSE Selina Solutions for Class 10 Mathematics Chapter-5-Quadratic Equations

Exercise 5(A)

1. Find which of the following equations are quadratic:

(i) (3x - 1)² = 5(x + 8)

Ans:  Solving the given equation

(3x - 1)² = 5(x + 8)

⇒ (9x² - 6x + 1) = 5x + 40

⇒ 9x² - 11x - 39 =0

which is of the form ax2 + bx + c = 0.

∴ Given equation is a quadratic equation.

(ii) 5x² - 8x = -3(7 - 2x)

Ans:  Solving the given equation

5x² - 8x = -3(7 - 2x)

⇒ 5x² - 8x = 6x - 21

⇒ 5x² - 14x + 21 =0 

which is of the form ax2 + bx + c = 0.

∴ Given equation is a quadratic equation.

(iii) (x - 4)(3x + 1) = (3x - 1)(x +2)

Ans:  Solving the given equation 

(x - 4)(3x + 1) = (3x - 1)(x +2)

⇒ 3x2 + x - 12x - 4 = 3x2 + 6x - x - 2

⇒ 16x + 2 =0; which is not of the form ax2 + bx + c = 0.

∴ Given equation is not a quadratic equation. 

(iv) x² + 5x - 5 = (x - 3)2

Ans:  Solving the given equation 

x² + 5x - 5 = (x - 3)²

⇒ x² + 5x - 5 = x² - 6x + 9

⇒ 11x - 14 =0; which is not of the form ax2 + bx + c = 0.

∴ Given equation is not a quadratic equation. 

(v) 7x3 - 2x² + 10 = (2x - 5)²

Ans:  Solving the given equation 

7x³ - 2x² + 10 = (2x - 5)²

⇒ 7x³ - 2x² + 10 = 4x² - 20x + 25

⇒ 7x³ - 6x² + 20x - 15 = 0

 which is not of the form ax2 + bx + c = 0.

∴ Given equation is not a quadratic equation.

(vi) (x - 1)2 + (x + 2)2 + 3(x +1) = 0

Ans:  Solving the given equation 

(x - 1)² + (x + 2)² + 3(x +1) = 0

⇒ x² - 2x + 1 + x² + 4x + 4 + 3x + 3 = 0

⇒ 2x² + 5x + 8 = 0 

which is of the form ax² + bx + c = 0.

∴ Given equation is a quadratic equation.


2. (i) Is x = 5 a solution of the quadratic equation x² - 2x - 15 = 0?

Ans:  P(x)=x² - 2x - 15 = 0

For x = 5 to be the solution of the given quadratic equation it should satisfy the equation. i.e P(5) = 0

So, substituting x = 5 in the given equation, we get

P(5) = (5)² - 2(5) - 15= 25 - 10 - 15 = 0

Hence, x = 5 is a solution of the quadratic equation x² - 2x - 15 = 0. 

(ii) Is x = -3 a solution of the quadratic equation 2x2 - 7x + 9 = 0?

Ans:  2x² - 7x + 9 = 0

For x = -3 to be the solution of the given quadratic equation it should satisfy the equation. i.e P(-3)=0

So, substituting x = -3 in the given equation, we get

P(-3)=2(-3)2 - 7(-3) + 9 = 18 + 21 + 9  = 48 ≠ 0

Hence, x = -3 is not a solution of the quadratic equation 2x2 - 7x + 9 = 0. 


3. If $\sqrt {\frac{2}{3}} $ is a solution of equation 3x² + mx + 2 = 0, find the value of m.

Ans:  For x =  $\sqrt {\frac{2}{3}} $ to be solution of the given quadratic equation it should satisfy the equation

So, substituting x =$\sqrt {\frac{2}{3}} $ in the given equation, we get

 3 ${\left( {\sqrt {\frac{2}{3}} } \right)^2}$ + m $\left( {\sqrt {\frac{2}{3}} } \right)$ + 2 = 0

⇒3 $\left( {\sqrt {\frac{2}{3}} } \right)$ + m $\left( {\sqrt {\frac{2}{3}} } \right)$ + 2 = 0

⇒-4 $\left( {\sqrt {\frac{3}{2}} } \right)$ = m

⇒-2($\sqrt 6 $)  = m

Hence for m=-2($\sqrt 6 $),   x =  $\sqrt {\frac{2}{3}} $ to is solution of 3x2 + mx + 2 = 0



4. $\frac{2}{3}$ and 1 are the solutions of equation mx² + nx + 6 = 0. Find the values of m and n.

Ans:  For x =$\frac{2}{3}$ and x = 1 to be solutions of the given quadratic equation it should satisfy the equation

So, substituting x = $\frac{2}{3}$ and x = 1 in the given equation, we get

m ${\left( {\frac{2}{3}} \right)^2}$ + n $\left( {\frac{2}{3}} \right)$ + 6 = 0

⇒ m $\left( {\frac{4}{9}} \right)$ + n $\left( {\frac{2}{3}} \right)$ + 6 = 0

⇒ 4m + 6n + 54 = 0………. (i)

m($1$ + n($1$)+ 6 = 0

⇒ m + n +6 = 0………..(2)

Solving equations (1) and (2) simultaneously,

Multiply equation (2) by 6 and subtract with equation (1), 

-2m +18 = 0

⇒ m = 9

Substitute value of m in (2),

n + 9 + 6 = 0

⇒ n = -15

Thus, the value of m is 9 and the value of n is −15


5. If 3 and -3 are the solutions of equation ax² + bx - 9 = 0. Find the values of a and b.

Ans:  For x = 3 and x = -3 to be solutions of the given quadratic equation it should satisfy the equation

So, substituting x = 3 and x = -3 in the given equation, we get

a(3)² + b(3) - 9 = 0

⇒ a(9) + b(3) - 9 = 0

⇒ 3a + b - 3 = 0………..(1)

a(-3)² + b(-3) - 9 = 0

⇒ 9a -3b - 9 = 0

⇒ 3a -b -3 = 0……….(2)

Solving equations (1) and (2) simultaneously,

Adding equation (1) and equation (2),

(3a + b - 3)+ (3a -b -3) = 0

⇒ 6a -6 = 0

⇒ a = 1

Substitute value of a in ( 1)

3(1) -b -3 = 0

⇒b = 0


Exercise 5(B)

1. Without solving, comment upon the nature of roots of each of the following equations:

(i) 7x² - 9x +2 =0

Ans:  a =7, b= -9, c=2

∴ Discriminant = b² - 4ac

                      D = (-9)² -4(7)(2)

                      D = 81-56

                      D = 25 > 0

Since D > 0 and 25 is not a perfect square. Therefore, the equation has two real and unequal roots.

(ii) 6x² - 13x +4 =0

Ans:  a = 6 , b = -13, c = 4

∴ Discriminant = b² - 4ac

                    D = (-13)² - 4(6)(4)

                    D = 169 - 56

                    D = 113 > 0

Since D > 0. Therefore, the equation has two real and unequal roots.

(iii) 25x² - 10x +1=0

Ans:  a = 25, b = -10, c = 1

∴ Discriminant = b² - 4ac

                      D = (-10)² - 4(25)(1)

                      D = 100 - 100

                      D = 0

Since D = 0. Therefore, the equation has two real and equal roots.

(iv) x² +2($\sqrt 3 $)x- 9 = 0

Ans:  a = 1, b = 2$\sqrt 3 $, c = -9

∴ Discriminant = b² - 4ac

                      D = (2$\sqrt 3 $)² -4(1)(-9)

                      D = 12+36= 48 >0

Since D > 0 and 25 is not a perfect square. Therefore, the equation has two real and unequal roots.

(v) x² - ax - b² =0

Ans:  a = 1, b = -a, c = -(b)²

∴ Discriminant = b² – 4ac

                     D = (-a)² – 4 (1) (-b)²

                     D = a² + 4b² >0                        

Since D > 0. Therefore, the equation has two real and unequal roots.

(vi) 2x² + 8x + 9 = 0

Ans:   a = 2, b = 8, c = 9

∴ Discriminant = b² - 4ac

                         = (8)² - 4(2)(9)

                         = 64-72

                         = -8 < 0 

Since D <0. Therefore, the equation has no real roots.


2. (i) Find the value of p, if the following quadratic equation has equal roots : 4x² - (p - 2)x + 1 = 0

Ans:  Since the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b² - 4ac =0

Here, a = 4, b = -(p-2), c = 1

    D = (p-2)² - 4(4)(1) = 0

⇒ (p-2)² -(4)2= 0

⇒ (p-2+4)(p-2-4)= 0

⇒ (p+2)(p-6)= 0

Thus, the values of p are −2 and 6                        

(ii). Find the value of 'p', if the following quadratic equations have equal roots:x² + (p - 3)x + p = 0

Ans:  Since the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b² - 4ac =0

Here, a = 1, b = (p-3), c=p

D = (p-3)² - 4(1)(p) = 0

⇒ (p)²-6p+9-4p= 0

⇒ (p)²-10p+9= 0

⇒ (p)²-p-9p+9= 0

⇒ p(p-1)-9(p-1)= 0

⇒ (p-1)(p-9)= 0

Thus, the values of p are 1 and 9


3. The equation 3x² - 12x + (n - 5) = 0 has equal roots. Find the value of n.

Ans:  Since the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b² - 4ac =0

Here, a =3, b = -12, c = n-5

D = (-12)² -4(3)(n-5) = 0

⇒144-12(n-5) = 0

⇒ 144 + 60 -12n= 0

⇒ 204= 12n 

⇒ n= $\frac{{204}}{{12}}$

⇒ n = 17

Thus, the value of n is =17


4. Find the value of m, if the following equation has equal roots: (m - 2)x² - (5+m)x +16 =0

Ans:  Since the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b² - 4ac =0

Here, a = m-2, b= m + 5, c = 16

D = (m+5)²-4(m-2)(16) = 0

⇒ (m)² +10m+25- 64(m-2)= 0

⇒ m²-54m+153= 0

⇒ (m)²-3m-51m+153= 0

⇒ m(m-3)-51(m-3)= 0

⇒ (m-3)(m-51)= 0

Thus, the values of m are 51 and 3.


 5. Find the value of k for which the equation 3x²- 6x + k = 0 has distinct and real roots.

Ans:  Since the equation has distinct roots. Therefore, the discriminant will be greater than zero.

∴ Discriminant = b² - 4ac > 0

Here, a = 3, b = -6, c = k

D = (-6)² - 4(3)(k) > 0

⇒ 36 -12k > 0

⇒ 36 > 12k

⇒ k < 3

Thus, the value of k is 3 less than 3.


Exercise 5(C)

Solve equations number 1 to number 20, given below using factorization method

1. Solve x²-10x-24 =0

Ans:  x²-10x-24 =0

⇒ x²-12x+2x-24 =0

⇒ x(x-12)+2(x-12) =0

⇒ (x+2)(x-12) =0

Since, x-12 = 0 or x+2 = 0

Then   x =12    or x =-2


2. Solve x²-16 =0

Ans:  x²-16 =0

⇒ x²-(4)² =0

⇒ (x+4)(x-4) =0

Since, x-4 =0 or x+4 = 0

Then x =4 or x =-4


3. Solve 2x²- $\frac{1}{2}$x =0

Ans:  2x² - $\frac{1}{2}$x = 0

⇒ x $\left( {2x - \frac{1}{2}} \right)$ = 0

Since, x=0 or 2x-$\frac{1}{2}$ = 0

Then   x =0    or x = $\frac{1}{4}$


4. Solve x(x-5)=24

Ans:  x²-5x-24 =0

⇒ x²-8x+3x-24 =0

⇒ x(x-8)+3(x-8) =0

⇒ (x+3)(x-8) =0

Since, x-8 =0 or x+3 = 0

Then x =9 or x =-3


5. Solve $\frac{9}{2}$ x = x² + 5 

Ans:  $\frac{9}{2}$ x = x² + 5 

$9$ x = 2x² + 10 

⇒ 2x² - 9x + 10 = 0

⇒ 2x² - 4x - 5x + 10 = 0

⇒ 2x(x-2) - 5(x-2) =0

⇒ (2x-5)(x-2) =0

Since, x-2 =0 or 2x-5 = 0

Then   x =2 or x =$\frac{5}{2}$


6. Solve $\frac{6}{x}$ = 1+x

Ans:  x²+x =6

⇒ x²+x-6 =0

⇒ x²+3x -2x-6 =0

⇒ x(x+3)-2(x+3) =0

⇒ (x+3)(x-2) =0

Since, x-2 = 0 or x+3 = 0

Then x =2 or x =-3


7. Solve: x =$\frac{{3x + 1}}{{4x}}$

Ans:  4x² = 3x +1

⇒ 4x²-3x-1 = 0

⇒ 4x²-4x+x-1 = 0

⇒ 4x(x-1)+1(x-1) =0

⇒ (4x+1)(x-1) =0

Since, 4x+1 = 0 or x-1 = 0

Then x = -$\frac{1}{4}$ or x =1


8. Solve: x + $\frac{1}{x}$= 2.5

Ans:  x + $\frac{1}{x}$= $\frac{5}{2}$

⇒ x + $\frac{1}{x}$= $\frac{5}{2}$

⇒ 2(x² + 1) = 5x 

⇒ 2(x² + 1) = 5x 

⇒ 2x² -5x+ 2 = 0

⇒ 2x² -4x - x + 2 = 0

⇒ 2x(x-2) -1(x- 2) = 0

⇒ (2x-1)(x-2) = 0

Since, 2x-1 = 0 or x-2 = 0

Then x = $\frac{1}{2}$ or x = 2


9. Solve: (2x-3)² = 49

Ans:  (2x-3)² =49

⇒      4x²-12x+9-49 =0

⇒      4x²-12x-40 =0

⇒      x²-3x-10 =0

⇒      x²-5x+2x-10 =0

⇒      x(x-5) +2(x- 5) = 0

⇒      (x-2)(x-5) =0

Since, x+2 =0 or x-5 = 0

Then x =-2 or x =5


10.Solve 2(x2-6)=3(x-4)

Ans:  2(x²-6)=3(x-4)

⇒      2x²-3x=0 

⇒      x(2x-3) = 0 

Since, x =0 or 2x-3 = 0

Then x =0 or x =$\frac{3}{2}$


11. Solve (x+1)(2x + 8) = (x+7)(x+3)

Ans:  (x+1)(2x + 8) = (x+7)(x+3)

⇒      2x²+8x+2x+8 = x²+7x+3x+21

⇒      x²-13 = 0

⇒      (x+$\sqrt {13} $)(x-$\sqrt {13} $) =0

Since, x-$\sqrt {13} $ =0 or x+$\sqrt {13} $ =0

Then x=$\sqrt {13} $  or x= -$\sqrt {13} $


12. Solve x²-(a+b)x+ab =0

Ans:  x²-(a+b)x+ab =0

⇒      x²-ax-bx+ab =0

⇒      x(x-a)-b(x-a) =0

⇒      (x-a)(x-b) =0

Since, x-a=0 or x-b= 0

Then x =a or x =b


13. Solve (x+3)²-4(x+3)-5 =0

Ans:  (x+3)2-4(x+3)-5 =0

⇒      x²+6x+9-4x-12-5 =0

⇒      x²+2x-8 =0

⇒      x²+4x-2x-8 =0

⇒      x(x+4) -2(x+4) = 0

⇒      (x-2)(x+4) =0

Since, x+4 =0 or x-2 = 0

Then x =-4 or x =2


14. Solve 4(2x-3)²-(2x-3)-14 =0

Ans:  (2x-3)²-(2x-3)-14 =0

Put 2x-3 = y

⇒      4y²-y-14 =0

⇒     4y²-8y+7y-14 =0

⇒      4y(y-2)+7(y-2) =0

⇒      (4y+7)(y-2) =0

Since, 4y+7 =0 or y-2 = 0

 ⇒  4(2x-3)+7 = 0 or (2x-3)-2 = 0

 ⇒   8x =12-7 or 2x =5 

Then x = $\frac{5}{8}$ or x = $\frac{5}{2}$


15. Solve $\frac{{3x - 2}}{{2x - 3}}$= $\frac{{3x - 8}}{{x + 4}}$

Ans:  $\frac{{3x - 2}}{{2x - 3}}$= $\frac{{3x - 8}}{{x + 4}}$

⇒      (3x-2)(x+4)=(3x-8)(2x-3)

⇒    3x²+12x-2x-8 = 6x2-9x-16x+24

⇒    3x²+10x-8 = 6x2-25x+24

⇒     3x²-35x+32 = 0

⇒    3x²-32x-3x+32 = 0

⇒    x(3x-32)-1(3x-32) = 0

⇒    (x-1)(3x-32) = 0

Since, x-1=0 or 3x-32 = 0

Then x =1 or x =$\frac{{32}}{3}$


16. Solve 2x² - 9x + 10 = 0, When

(i) x ∈ N

(ii) x ∈ Q

Ans:  2x²-9x+10 =0

⇒      2x²-4x-5x+10 =0

⇒      2x(x-2)-5(x-2) =0

⇒      (2x-5)(x-2) =0

Since, 2x-5=0 or x-2 = 0

Then x = $\frac{5}{2}$ or x =2

(i) When x ∈ N, x =2

(ii) When x ∈ Q, x = $\frac{5}{2}$ or x =2


17. $\frac{{x - 3}}{{x + 3}}$+$\frac{{x + 3}}{{x - 3}}$=2 $\frac{1}{2}$

Ans:  For  $\frac{{x - 3}}{{x + 3}}$ + $\frac{{x + 3}}{{x - 3}}$ = 2 $\frac{1}{2}$

$\frac{{\left( {x - 3} \right)\left( {x - 3} \right) + \left( {x + 3} \right)\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}$ = $\frac{5}{2}$

⇒ 2[(x-3)²+(x+3)²]=5(x+3)(x-3)

⇒ 2(2x²+18)=5(x²-9)

⇒ x²-81=0

⇒ (x-9)(x+9)=0

Since, x-9=0 or x+9 = 0

⇒ x = 9 or x = -9


18. Solve $\frac{4}{{x + 2}}$ - $\frac{1}{{x + 3}}$ = $\frac{4}{{2x + 1}}$

Ans:  For $\frac{4}{{x + 2}}$-$\frac{1}{{x + 3}}$= $\frac{4}{{2x + 1}}$

$\frac{{4\left( {x + 3} \right) - \left( {x + 2} \right)}}{{\left( {x + 3} \right)\left( {x + 2} \right)}}$= $\frac{4}{{2x + 1}}$

$\frac{{3x + 10}}{{\left( {x + 3} \right)\left( {x + 2} \right)}}$= $\frac{4}{{2x + 1}}$

⇒ (2x+1)(3x+10)=4(x+3)(x+2)

⇒ 6x2+20x+3x+10=4(x2+5x+6)

⇒ 2x²+3x-14=0

⇒ 2x²-4x+7x-14=0

⇒ 2x(x-2)+7(x-2)=0

⇒ (x-2)(2x+7)=0

Since, x-2=0 or 2x+7 = 0

⇒ x=2 or x=-$\frac{7}{2}$


19. Solve $\frac{5}{{x - 2}}$-$\frac{3}{{x + 6}}$= $\frac{4}{x}$

Ans:  For $\frac{5}{{x - 2}}$-$\frac{3}{{x + 6}}$= $\frac{4}{x}$

$\frac{{5\left( {x + 6} \right) - 3\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 6} \right)}}$= $\frac{4}{x}$

$\frac{{2x + 36}}{{\left( {x + 6} \right)\left( {x - 2} \right)}}$= $\frac{4}{x}$

⇒ (2x+36)(x)=4(x+6)(x-2)

⇒ 2x²+36x=4(x2+4x-12)

⇒ x²-10x-24=0

⇒ x²-12x+2x-24=0

⇒ x(x-12)+2(x-12)=0

⇒ (x+2)(x-12)=0

Since, x-12=0 or x+2 = 0

⇒ x=12 or x=-2


20. (1+$\frac{1}{{x + 1}}$)(1-$\frac{1}{{x - 1}}$)= $\frac{7}{8}$

Ans:  (1+$\frac{1}{{x + 1}}$)(1-$\frac{1}{{x - 1}}$)= $\frac{7}{8}$

⇒ ($\frac{{x + 1 + 1}}{{x + 1}}$)($\frac{{x - 1 - 1}}{{x - 1}}$)= $\frac{7}{8}$

⇒ ($\frac{{x + 2}}{{x + 1}}$)($\frac{{x - 2}}{{x - 1}}$)= $\frac{7}{8}$

⇒ 8(x+2)(x-2)=7(x+1)(x-1)

⇒ 8(x²-4)=7(x2-1)

⇒ x²-25=0

⇒ (x+5)(x-5)=0

Since, x-5=0 or x+5 = 0

⇒ x=5 or x=-5 


21. Find the quadratic equation, whose solution set is:

(i) {3,5}

Ans:  Since the solution set is {3,5}.

Therefore, the equation for the given solution set can be written as, 

 (x-5)(x-3) =0

⇒ x²-5x-3x+15 = 0

⇒ x²-8x+15 =0

 Thus, the required quadratic equation is x²-8x+15 =0

(ii){-2,3}

Ans:  Since the solution set is {-2,3}.

Therefore, the equation for the given solution set can be written as, 

 (x+2)(x-3) =0

⇒ x²-3x+2x-6 =0

⇒ x²-x-6=0

Thus, the required quadratic equation is x²-x-6=0


22. (i)Solve : $\frac{x}{3}$+$\frac{3}{{6 - x}}$= $\frac{{2\left( {x + 6} \right)}}{{15}}$

Ans:  For $\frac{x}{3}$+$\frac{3}{{6 - x}}$= $\frac{{2\left( {x + 6} \right)}}{{15}}$

$\frac{{x\left( {6 - x} \right) + 9}}{{3\left( {6 - x} \right)}}$= $\frac{{2\left( {x + 6} \right)}}{{15}}$

$\frac{{x\left( {6 - x} \right) + 9}}{{3\left( {6 - x} \right)}}$= $\frac{{2\left( {x + 6} \right)}}{{15}}$

⇒15 [x(6-x) +9] =6(6+x)(6-x)

⇒15(-x²+6x+9)=6(-x2+36)

⇒ x²-10x+9=0

⇒ x²-x-9x+9=0

⇒ x(x-1)-9(x-1)=0

⇒ (x-9)(x-1)=0

Since, x-9=0 or x-1 = 0

⇒ x=9 or x=1                      

(ii) Solve the equation 9x2 + $\frac{3}{4}$x +2 =0

Ans:  For 9x² + $\frac{3}{4}$x +2 =0

⇒36x²+3x+8=0

a=36, b=3, c=8

∴ Discriminant = b² - 4ac

                      D = (3)² -4(36)(8)

                      D = 9-1152

                      D = -1143 < 0

Since D < 0. Therefore, the given equation has no real roots.


23. Find the value of x, if a + 1=0 and x2 + ax - 6 =0.

Ans:  If a+1=0, then a = -1

Put this value in the given equation x2 + ax - 6 =0

          x²-x-6 =0

⇒      x²-2x+3x-6 =0

⇒      x(x-2)+3(x-2) =0

⇒      (x+3)(x-2) =0

Since, x-2 = 0 or x+3 = 0

Then x =2 or x =-3


24. Find the value of x, if a + 7 = 0; b + 10 = 0 and 12x² = ax - b.

Ans:  If a + 7 =0, then a = -7 and b + 10 =0, then b = - 10 

Put these values of a and b in the given equation

          12x²=-7x-(-10)

⇒      12x²+7x-10=0

⇒      12x²-8x+15x-10 =0

⇒      4x(3x-2)+3(3x-2) =0

⇒      (4x+3)(3x-2) =0

Since, 4x+3=0 or 3x-2 = 0

Then x =-$\frac{3}{4}$ or x =$\frac{2}{3}$


25. Use the substitution y= 2x +3 to solve for x, if 4(2x+3)² - (2x+3) - 14 =0.

Ans:  4(2x+3)2 - (2x+3) - 14 =0

         Put 2x+3 = y

⇒      4y²-y-14 =0

⇒     4y²-8y+7y-14 =0

⇒      4y(y-2)+7(y-2) =0

⇒      (4y+7)(y-2) =0

Since, 4y+7 =0 or y-2 = 0

 ⇒ 4(2x+3)+7 =0 or (2x+3)-2 = 0

 ⇒ 8x =-12-7    or   2x =2-3 

Then x =- $\frac{{19}}{8}$ or x =- $\frac{1}{2}$


26. Without solving the quadratic equation 6x² - x – 2 = 0, find whether x = $\frac{2}{3}$ is a solution of this equation or not.

Ans:  Consider the equation, 6x² - x - 2=0, If x = $\frac{2}{3}$ is a root of the equation P(-1) must be 0,

Put x = $\frac{2}{3}$ in P(x)

P($\frac{2}{3}$) =  6($\frac{2}{3}$)2 - $\frac{2}{3}$ - 2

         = 6($\frac{4}{9}$)- $\frac{8}{3}$ 

        = $\frac{8}{3}$- $\frac{8}{3}$=0

Hence, x =  $\frac{2}{3}$ is a solution of the given equation.


27. Determine whether x = -1 is a root of the equation x² - 3x +2 = 0 or not.

Ans:  Here P(x) = x² - 3x +2=0, if x = -1 is a root of the equation P(-1) must be 0,

Put x = -1 in P(x)

P(1) = (-1)² - 3(-1) +2= 1 +3 +2=6$ \ne $0

Hence, x = -1 is not the solution of the given equation.


28. If x = $\frac{{\text{2}}}{{\text{3}}}$ is a solution of the quadratic equation 7x2+mx-3=0; Find the value of m.

Ans:  For P(x) = 7x² + mx - 3it is given x = $\frac{2}{3}$ is the solution of the given equation.

Put the given value of x in the given equation i.e P$\left( {\frac{2}{3}} \right)$ =0

P$\left( {\frac{2}{3}} \right)$ =  7$\left( {\frac{2}{3}} \right)$2 +m$\left( {\frac{2}{3}} \right)$- 3 = 0

⇒ 7$\left( {\frac{4}{9}} \right)$ +  m$\left( {\frac{2}{3}} \right)$ - 3 = 0

$\frac{1}{9}$ = - m$\left( {\frac{2}{3}} \right)$

⇒ m = -$\frac{1}{6}$ 


29. If x = -3 and x =$\frac{{\text{2}}}{{\text{3}}}$  are solutions of quadratic equation mx2 + 7x + n = 0, find the values of m and n.

Ans:  

For x = $\frac{2}{3}$ and x = -3 to be solutions of the given quadratic equation it should satisfy the equation

So, substituting x = $\frac{2}{3}$ and x = -3 in the given equation, we get

m$\left( {\frac{2}{3}} \right)$2+ 7$\left( {\frac{2}{3}} \right)$+ n = 0

⇒ m$\left( {\frac{4}{9}} \right)$+ $\left( {\frac{{14}}{3}} \right)$+ n = 0

⇒ 4m+ 9n+ 42 = 0                 ………. (i)

m(-3 )2+ 7($ - 3$)+ n = 0

⇒ 9m + n - 21 = 0

⇒n = 21 - 9m………..(2)

Put n in (1),

4m + 9(21-9m) + 42 = 0

⇒ m = 3

Substitute value of m in ( 2),

n = 21 - 9(3)

⇒ n = - 6

Thus, the value of m is 3 and the value of n is −6


30. If quadratic equation x² - (m + 1) x + 6 = 0 has one root as x = 3; find the value of m and the root of the equation.

Ans:  For p(x) = x² - (m + 1) x + 6 it is given x = 3 is the solution of the given equation. Put the given value of x in the given equation i.e p($3$) =0

p($3$) = (3)2 - (m + 1) 3+ 6 = 0

⇒ (9) - (3m + 3) + 6 = 0

⇒ 12 = 3m

⇒ m = 4

Substitute 4 for m in the equation,

- 5x + 6 = 0

⇒ x² - 3x -2x + 6 = 0

⇒ x(x-3) - 2(x-3) = 0

⇒ (x-3)(x-2) =0

Since, x-3=0 or x-2 = 0

Then x =3 or x =2


31. Given that 2 is a root of the equation 3x² - p(x + 1) = 0 and that the equation px² - qx + 9 = 0 has equal roots, find the values of p and q.

Ans:  For P(x) = 3x² - p(x + 1) = 0 it is given x = 2 is the solution of the given equation. Put the given value of x in the given equation i.e P(2) =0

P($3$) = 3(2)² - p(2 + 1) = 0

⇒ (27) - (3p) = 0

⇒ 27 = 3p

⇒ p = 9

a = 7, b = -9, c = 2

For Q(x) = px² - qx + 9 = 0 has equal roots the Discriminant of Q(x) must be 0.

a = p = 9, b = -q, c = 9

∴ Discriminant = b² - 4ac =0

D = (-q)² -4(9)(9) =0

$ \Rightarrow $(-q)² - 4(9)(9) =0

$ \Rightarrow $ (q)² -144 =0

$ \Rightarrow $ (q -12)(q+12) =0 

Hence, q -12 = 0 or q+12 = 0 

q = 12 or q = -12

∴ p =9 & q = $ \pm \;12$        


32. $\frac{x}{a}$ - $\frac{{a + b}}{x}$ = $\frac{{b\left( {a + b} \right)}}{{ax}}$       

Ans:  $\frac{x}{a}$ - $\frac{{a + b}}{x}$ = $\frac{{b\left( {a + b} \right)}}{{ax}}$

⇒ ax \[\left( {\frac{x}{a} - \frac{{a + b}}{x}} \right)\] = ax $\left( {\frac{{b\left( {a + b} \right)}}{{ax}}} \right)$

⇒ x2-a(a+b)=b(a+b)

⇒ x²=a(a+b)+b(a+b)

⇒ x²=(a+b)(a+b)

⇒ x²=(a+b)²

⇒ x = $ \pm $(a+b)


33. Solve the equation $\left( {\frac{{{\text{1200}}}}{{\text{x}}}{\text{ + 2}}} \right)$ (x -10) -1200 = 60

Ans:  $\left( {\frac{{1200}}{x} + 2} \right)$ (x -10) -1200 = 60

$\left( {\frac{{1200}}{x} + 2} \right)$ (x -10) =1260

$\left( {\frac{{600 + x}}{x}} \right)$ (x -10) =630

⇒ (600+x)(x -10) =630x

⇒ 600x - 6000 + x2-10x = 630x

⇒ x2 - 40x - 6000 = 0

⇒ x2 + 60x - 100x - 6000 = 0

⇒ x(x+60) - 100(x+60) = 0

⇒ (x-100)(x+60) =0

Hence, x -100=0      or x+60 =0 

             x=100          or x = -60


34. If -1 and 3 are the roots of x²+px+q=0 then find the values of p and q

Ans:  For x =-1 and x = 3 to be solutions of the given quadratic equation it should satisfy the equation

So, substituting x = -1 and x = 3 in the given equation, we get

(-1)²+p(-1)+q = 0

⇒1-p+q = 0 

⇒1+q = p ……. (1)

(3)2+p(3)+q = 0

⇒ 9+3p+q = 0 ………..(2)

Put p in (2)from (1),

9+3(1+q)+q = 0

⇒12+4q = 0

⇒ q = -3

Put value of q in (1)  

p = 1-3 

⇒ p = -2

Thus, the values of p and q are − 2 and 3 respectively.


Exercise 5(D)

1. Solve each of the following equations using the formula:

(i) x² - 6x =27 

Ans:  x² - 6x =27

Here, a =1, b=-6 , c=-27

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 6} \right)\; \pm \;\sqrt {{6^2} - 4\left( 1 \right)\left( { - 27} \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{ - \left( { - 6} \right)\; \pm \;\sqrt {36 + 108} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{6\; \pm \;\sqrt {144} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{6 \pm 12}}{2}$= $\frac{{6\; + \;12}}{2}$or $\frac{{6\; - \;12}}{2}$= 9 or -3

(ii) x² - 10x +21=0

Ans:  x² - 10x +21 = 0

Here, a = 1, b = -10, c = 21

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 10} \right)\; \pm \;\sqrt {{{\left( { - 10} \right)}^2} - 4\left( 1 \right)\left( {21} \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{10\; \pm \;\sqrt {100 - 84} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{10\; \pm \;\sqrt {16} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{10 \pm 4}}{2}$ = $\frac{{10\; + \;4}}{2}$ or $\frac{{10\; - \;4}}{2}$= 7 or 3    

(iii) x²+6x-10=0

Ans:  x² +6x -10=0

Here, a =1, b=6, c=-10

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( 6 \right)\; \pm \;\sqrt {{{\left( 6 \right)}^2} - 4\left( 1 \right)\left( { - 10} \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{6\; \pm \;\sqrt {36 + 40} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{6\; \pm \;\sqrt {76} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{6\; \pm \;2\sqrt {19} }}{2}$= $3\; \pm \;\sqrt {19} $

(iv) x² +2x – 6 = 0

Ans:  x² + 6x -10 = 0

Here, a = 1, b = 2, c = -6

 Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

 ⇒ x = $\frac{{ - \left( 2 \right)\; \pm \;\sqrt {{{\left( 2 \right)}^2} - 4\left( 1 \right)\left( { - 6} \right)} }}{{2\left( 1 \right)}}$

 ⇒ x = $\frac{{ - 2\; \pm \;\sqrt {4 + 24} }}{{2\left( 1 \right)}}$

 ⇒ x = $\frac{{ - 2\; \pm \;\sqrt {28} }}{{2\left( 1 \right)}}$

 ⇒ x = $\frac{{ - 2\; \pm \;2\sqrt 7 }}{2}$= $ - 1\; \pm \;\sqrt 7 $ 

(v) 3x²+ 2x - 1=0

Ans:  3x² +2x -1=0

Here, a =2, b=2, c=-1

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

  ⇒ x = $\frac{{ - \left( 2 \right)\; \pm \;\sqrt {{{\left( 2 \right)}^2} - 4\left( 2 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$

 ⇒ x  = $\frac{{ - 2\; \pm \;\sqrt {4 + 8} }}{{2\left( 1 \right)}}$

 ⇒ x = $\frac{{ - 2\; \pm \;\sqrt {12} }}{2}$

 ⇒ x = $\frac{{ - 2\; \pm 2\;\sqrt 3 }}{2}$= $ - 1\; \pm \;\sqrt 3 $ 

(vi) 2x²+7x+5=0

Ans:  2x²+7x+5=0

Here, a =2, b=7, c=5

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( 7 \right)\; \pm \;\sqrt {{7^2} - 4\left( 2 \right)\left( 5 \right)} }}{{2\left( 2 \right)}}$

⇒ x = $\frac{{ - \left( 7 \right)\; \pm \;\sqrt {49 - 40} }}{4}$

 ⇒  x = $\frac{{ - 7 \pm \;\sqrt 9 }}{4}$

 ⇒  x = $\frac{{ - 7 \pm 3}}{4}$= $\frac{{ - 7\; + \;3}}{4}$or $\frac{{ - 7\; - \;3}}{4}$= 1 or $\frac{{ - 10}}{4}$

(vii) $\frac{2}{3}$ x = - $\frac{1}{6}$ x2 - $\frac{1}{3}$ 

Ans:  $\frac{2}{3}$x = -$\frac{1}{6}$x2 -$\frac{1}{3}$

 ⇒  4x = -x² -2

 ⇒ x²+4x+2=0

Here, a =1, b=4, c=2

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( 4 \right)\; \pm \;\sqrt {{4^2} - 4\left( 1 \right)\left( 2 \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{ - 4\; \pm \;\sqrt {16 - 8} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{ - 4\; \pm \;\sqrt 8 }}{2}$

⇒ x = $\frac{{ - 4\; \pm 2\;\sqrt 2 }}{2}$= $ - 2\; \pm \;\sqrt 2 $ 

(viii) $\frac{1}{{15}}$ x2 + $\frac{5}{3}$ = $\frac{2}{3}$ x 

Ans:  $\frac{1}{{15}}$ x² + $\frac{5}{3}$= $\frac{2}{3}$x

 ⇒ x² -10x+25=0

Here, a =1, b=-10, c=25

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

 ⇒ x = $\frac{{ - \left( { - 10} \right)\; \pm \;\sqrt {{{\left( { - 10} \right)}^2} - 4\left( 1 \right)\left( {25} \right)} }}{{2\left( 1 \right)}}$

 ⇒ x = $\frac{{10\; \pm \;\sqrt {100 - 100} }}{{2\left( 1 \right)}}$

 ⇒ x = $\frac{{10\; \pm \;\sqrt 0 }}{2}$

 ⇒ x = 5

(ix) x² - 6= 2$\sqrt 2 $x

Ans:  x² - 6= 2$\sqrt 2 $x

⇒x² - 2$\sqrt 2 $x -6 =0

Here, a =1, b=- 2$\sqrt 2 $ , c=-6

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - \;2\sqrt 2 } \right)\; \pm \;\sqrt {{{\left( { - \;2\sqrt 2 } \right)}^2} - 4\left( 1 \right)\left( { - 6} \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{\;2\sqrt 2 \; \pm \;\sqrt {8 + 24} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{\;2\sqrt 2 \; \pm \;\sqrt {32} }}{2}$

⇒ x = $\frac{{\;2\sqrt 2 \; \pm 4\sqrt 2 }}{2}$= $\sqrt 2 \; + 2\sqrt 2 $ or $\sqrt 2 \; - 2\sqrt 2 $ =3$\sqrt 2 $ or - $\sqrt 2 $

(x) $\frac{4}{x}$-3 = $\frac{5}{{2x + 3}}$

Ans:  For $\frac{4}{x}$-3= $\frac{5}{{2x + 3}}$

$\frac{{4 - 3x}}{x}$= $\frac{5}{{2x + 3}}$

⇒ (4-3x)(2x+3)=5x

⇒ -6x2+8x-9x+12=5x

⇒ 6x2+6x-12=0

⇒ x2+x-2=0

Here, a =1, b=1, c=-2

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( 1 \right)\; \pm \;\sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right)\left( { - 2} \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{ - 1\; \pm \;\sqrt {1 + 8} }}{2}$

⇒ x = $\frac{{ - 1\; \pm \;\sqrt 9 }}{2}$

⇒ x = $\frac{{ - 1 \pm 3}}{2}$= $\frac{{ - 1\; + \;3}}{2}$or $\frac{{ - 1\; - \;3}}{2}$= 1 or -2

(xi) $\frac{{2x + 3}}{{x + 3}}$= $\frac{{x + 4}}{{x + 2}}$

Ans:  $\frac{{2x + 3}}{{x + 3}}$= $\frac{{x + 4}}{{x + 2}}$

⇒ (2x+3)(x+2)=(x+3)(x+4)

⇒ 2x²+4x+3x+6 = x²+4x+3x+12

⇒ x²-6 = 0

Here, a =1, b=0, c=-6

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( 0 \right)\; \pm \;\sqrt {{{\left( 0 \right)}^2} - 4\left( 1 \right)\left( { - 6} \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{\; \pm \;\sqrt {24} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{\; \pm \;\sqrt {24} }}{2}$

⇒ x = $\frac{{ \pm 2\;\sqrt 6 }}{2}$= $\; \pm \;\sqrt 6 $

(xii) $\sqrt 6 $x²-4x - 2$\sqrt 6 $=0

Ans: $\sqrt 6 $x²-4x - 2$\sqrt 6 $=0

Here, a=$\sqrt 6 $ , b=-4, c=-2$\sqrt 6 $

 Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 4} \right)\; \pm \;\sqrt {{{\left( { - 4} \right)}^2} - 4\left( { - 2\sqrt 6 } \right)\left( {\sqrt 6 } \right)} }}{{2\left( {\sqrt 6 } \right)}}$

⇒ x = $\frac{{4\; \pm \;\sqrt {16 + 48} }}{{2\left( {\sqrt 6 } \right)}}$

⇒ x = $\frac{{4\; \pm \;\sqrt {64} }}{{2\sqrt 6 }}$

⇒ x = $\frac{{4\; \pm 8}}{{2\sqrt 6 }}$ = $\frac{{4 + 8}}{{2\sqrt 6 }}$ or $\frac{{4 - 8}}{{2\sqrt 6 }}$ = $\frac{{12}}{{2\sqrt 6 }}$ or $\frac{{ - 4}}{{2\sqrt 6 }}$ = $\sqrt 6 $ or $\frac{{ - \sqrt 6 }}{3}$

(xiii) $\frac{{2x}}{{x - 4}}$+$\frac{{2x - 5}}{{x - 3}}$=8 $\frac{1}{3}$

Ans:  For $\frac{{2x}}{{x - 4}}$+$\frac{{2x - 5}}{{x - 3}}$=8 $\frac{1}{3}$

$\frac{{\left( {2x} \right)\left( {x - 3} \right) + \left( {2x - 5} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x - 3} \right)}}$= $\frac{{25}}{3}$

⇒3[2x(x-3)+(x-4)(2x-5)]=25(x-4)(x-3)

⇒ 3(4x2-19x+20)=25(x2-7x+12)

⇒ 13x2-118x+240=0

Here, a =13, b=-118, c=240

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

 ⇒ x = $\frac{{ - \left( { - 118} \right)\; \pm \;\sqrt {{{\left( { - 118} \right)}^2} - 4\left( {13} \right)\left( {240} \right)} }}{{2\left( {13} \right)}}$

 ⇒ x = $\frac{{118\; \pm \;\sqrt {1444} }}{{26}}$

 ⇒ x = $\frac{{118\; \pm \;38}}{{26}}$

 ⇒ x = $\frac{{118\; + \;36}}{{26}}$or $\frac{{118\; - \;36}}{{26}}$=6 or $\frac{{40}}{{13}}$

(xiv) $\frac{{x - 1}}{{x - 2}}$+$\frac{{x - 3}}{{x - 4}}$=3 $\frac{1}{3}$

Ans:  For $\frac{{x - 1}}{{x - 2}}$+$\frac{{x - 3}}{{x - 4}}$=3 $\frac{1}{3}$

$\frac{{\left( {x - 1} \right)\left( {x - 4} \right) + \left( {x - 3} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x - 4} \right)}}$= $\frac{{10}}{3}$

⇒3[(x-1)(x-4)+(x-3)(x-2)]=10(x-2)(x-4)

⇒ 3(2x²-10x+10)=10(x²-6x+8)

⇒ 2x²-15x+25=0

a =2, b=-15, c=25

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 15} \right)\; \pm \;\sqrt {{{\left( { - 15} \right)}^2} - 4\left( 2 \right)\left( {25} \right)} }}{{2\left( 2 \right)}}$

⇒ x = $\frac{{15\; \pm \;\sqrt {225 - 200} }}{4}$

⇒ x = $\frac{{15\; \pm \;\sqrt {25} }}{4}$

⇒ x = $\frac{{15\; \pm 5\;}}{4}$= $\frac{{15\; + 5}}{4}or\;\frac{{15\; - \;5}}{4} = \frac{{\;5}}{2}\;\;or\;5$


2. Solve each of the following equations for x and give, in each case, your answer correct to one decimal place:

(i) x²-8x+5=0

Ans:  x² - 8x+5=0

Here, a =1, b=-8, c=5

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 8} \right)\; \pm \;\sqrt {{{\left( { - 8} \right)}^2} - 4\left( 1 \right)\left( 5 \right)} }}{2}$

⇒ x = $\frac{{8\; \pm \;\sqrt {64 - 20} }}{2}$

⇒ x = $\frac{{8 \pm \;\sqrt {44} }}{2}$

⇒ x = $\frac{{8 \pm \;2\sqrt {11} }}{2}$= $4 \pm \;\sqrt {11} $ = $4 \pm 3.3$= 7.3 or 0.7

(ii) 5x² +10x - 3 =0

Ans:  5x² -10x-3=0

Here, a=5, b=-10, c=-3

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 10} \right)\; \pm \;\sqrt {{{\left( { - 10} \right)}^2} - 4\left( 5 \right)\left( { - 3} \right)} }}{{2\left( 5 \right)}}$

⇒ x = $\frac{{10\; \pm \;\sqrt {100 + 60} }}{{10}}$

⇒ x = $\frac{{10 \pm \;\sqrt {160} }}{{10}}$

⇒ x = $\frac{{10 \pm \;4\sqrt {10} }}{{10}}$= $1 \pm \frac{2}{5}\;\sqrt {10} $ = $4 \pm \frac{2}{5}\;\left( {3.2} \right)$= 0.3 or -2.3


3. Solve each of the following equations for x and give, in each case, your answer correct to two decimal places:

(i) 2x² - 10x +5=0

Ans:  2x²-10x+5=0

Here, a=2, b=-10, c=5

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 10} \right)\; \pm \;\sqrt {{{\left( { - 10} \right)}^2} - 4\left( 2 \right)\left( 5 \right)} }}{{2\left( 2 \right)}}$

⇒ x = $\frac{{10\; \pm \;\sqrt {100 - 40} }}{4}$

⇒ x = $\frac{{10 \pm \;\sqrt {60} }}{4}$

⇒ x = $\frac{{10 \pm \;2\sqrt {15} }}{4}$= $\frac{5}{2} \pm \frac{1}{2}\;\sqrt {15} $ = $2.5 \pm \frac{1}{2}\;\left( {3.9} \right)$= 4.44 or 0.56

(ii) 4x +$\frac{6}{x}$ +13=0

Ans:  4x +$\frac{6}{x}$ +6=0

⇒ 4x² +13x+6=0

Here, a=4 , b=13 , c=6

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( {13} \right)\; \pm \;\sqrt {{{\left( {13} \right)}^2} - 4\left( 4 \right)\left( 6 \right)} }}{{2\left( 4 \right)}}$

⇒ x = $\frac{{ - \left( {13} \right)\; \pm \;\sqrt {169 - 96} }}{8}$

⇒ x = $\frac{{ - 13 \pm \;\sqrt {73} }}{8}$

⇒ x = $\frac{{ - 13 + \;\sqrt {73} }}{8}$or $\frac{{ - 13 - \;\sqrt {73} }}{8}$ = $\frac{{ - 13 + 8.54}}{8}or\;\frac{{ - 13 - 8.54}}{8}\;$=-0.56 or -2.69

(iii) 4x² - 5x -3=0

Ans:  4x²-5x-3=0

Here, a =4, b=-5 , c=-3

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 5} \right)\; \pm \;\sqrt {{{\left( { - 5} \right)}^2} - 4\left( 4 \right)\left( { - 3} \right)} }}{{2\left( 4 \right)}}$

⇒ x = $\frac{{5\; \pm \;\sqrt {25 + 48} }}{8}$

⇒ x = $\frac{{5 \pm \;\sqrt {73} }}{8}$

⇒ x = $\frac{{5 + \;\sqrt {73} }}{8}$or $\frac{{5 - \;\sqrt {73} }}{8}$ = $\frac{{5 + 8.54}}{8}or\;\frac{{5 - 8.54}}{8}\;$=-0.44 or 1.69

(iv) x²-3x-9=0

Ans:  x²-3x-9=0

Here, a=1, b=-3, c=-9

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 3} \right)\; \pm \;\sqrt {{{\left( { - 3} \right)}^2} - 4\left( 1 \right)\left( { - 9} \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{3\; \pm \;\sqrt {45} }}{2}$

⇒ x = $\frac{{3 \pm \;3\sqrt 5 }}{2}$

⇒ x = $\frac{{3 \pm \;3\left( {2.24} \right)}}{{10}}$= $\frac{{3 + 6.72}}{2}or\;\frac{{3 - 6.72}}{2}\;$=4.81 or -1.86

(v) x² - 5x - 10 = 0

Ans:  x²-5x-10=0

Here, a =1, b=-5, c=-10

 Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 5} \right)\; \pm \;\sqrt {{{\left( { - 5} \right)}^2} - 4\left( 1 \right)\left( { - 10} \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{5\; \pm \;\sqrt {25 + 40} }}{2}$

⇒ x = $\frac{{5 \pm \;\sqrt {65} }}{2}$

⇒ x = $\frac{{5 \pm \;8.06}}{2}$= $\frac{{5 + 8.06}}{2}or\;\frac{{5 - 8.06}}{2}\;$= 6.53 or -1.53


4. Solve each of the following equations for x and give, in each case, your answer correct to 3 decimal places:

(i) 3x²-12x-1=0

Ans:  3x²-12x-1=0

Here, a =3, b=-12, c=-1

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 12} \right)\; \pm \;\sqrt {{{\left( { - 12} \right)}^2} - 4\left( 3 \right)\left( { - 1} \right)} }}{{2\left( 3 \right)}}$

⇒ x = $\frac{{12\; \pm \;\sqrt {144 + 12} }}{6}$

⇒ x = $\frac{{12 \pm \;2\sqrt {39} }}{6}$

⇒ x =  $2 \pm \frac{1}{3}\;\sqrt {39} $ = $2 \pm \frac{1}{3}\;\left( {6.2} \right)$= 4.082 or -0.082

(ii) x² - 16 x +6= 0

Ans:  x² -16x+6=0

Here, a =1, b=-16, c=6

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 16} \right)\; \pm \;\sqrt {{{\left( { - 16} \right)}^2} - 4\left( 1 \right)\left( 6 \right)} }}{{2\left( 1 \right)}}$

⇒ x = $\frac{{16\; \pm \;\sqrt {256 - 24} }}{2}$

⇒ x = $\frac{{16 \pm \;\sqrt {232} }}{2}$

⇒ x = $\frac{{16 \pm \;2\sqrt {58} }}{2}$= $8 \pm \sqrt {58} $ = $8 \pm \;\left( {7.615} \right)$= 15.615 or 0.384

(iii) 2x² + 11x + 4= 0

Ans:  2x² +11x+4=0

Here, a=2, b=11, c=4

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( {11} \right)\; \pm \;\sqrt {{{\left( {11} \right)}^2} - 4\left( 2 \right)\left( 4 \right)} }}{{2\left( 2 \right)}}$

⇒ x = $\frac{{11\; \pm \;\sqrt {121 - 32} }}{4}$

⇒ x = $\frac{{11 \pm \;\sqrt {89} }}{4}$

⇒ x = $\frac{{11 \pm \;9.433}}{4}$= $\frac{{11 + \;9.433}}{4}$ or $\frac{{11 - \;9.433}}{4}$= -0.392 or -5.108


5. Solve:

(i) x⁴ - 2x² - 3 = 0

Ans:  x - 2x² - 3 = 0

Put y = x²

⇒ y² - 2y - 3 =0

⇒ y²-3y+y-3 =0

⇒ y(y-3)+1(y-3) =0

⇒ (y+1)(y-3) =0

Since, y-3 =0 or y+1 = 0

Then y = 3 or y =-1

⇒ x² = 3 or x² = -1(Rejected)                                 

⇒ x²-3 = 0

⇒ (x+ $\sqrt 3 $ )(x- $\sqrt 3 $ ) = 0

Since, x- $\sqrt 3 $ =0 or x + $\sqrt 3 $ = 0

Then x =$\sqrt 3 $ or x = -$\sqrt 3 $ 

(ii) x4 - 10x² +9 = 0

Ans:  x4 - 10x² +9 =0

Put    y = x²

⇒ y² - 10y +9 =0

⇒ y²-9y-y+9 =0

⇒ y(y-9)-1(y-9) =0

⇒ (y-1)(y-9) =0

Since, y-3 = 0 or y-1 = 0

Then y = 9 or y = 1

⇒ x² = 9 or x2=1                                

⇒ x²-9 = 0 or x²-1 = 0

⇒ (x+3)(x-3) = 0 or (x+1)(x-1) = 0

Since, x-3 = 0 or x+3 = 0 or x-1 = 0 or x+1 = 0

Then x = 3 or x = -3 or  x = 1  or x = -1


6. Solve:

(i) (x² - x)² + 5(x² - x) + 4 = 0

Ans:  (x² - x)² + 5(x² - x)+ 4=0

Put y = x²-x

⇒ y² +5y +4 =0

⇒ y² +4y+y+4 =0

⇒ y(y+4)+1(y+4) =0

⇒ (y+1)(y+4) =0

Since, y+4 =0 or y+1 = 0

Then y = -4 or y =-1

⇒ x²-x=-4 or  x²-x=-1                             

⇒ x²-x+4 = 0 or x2-x+1=0

For x²-x+4 = 0

a=1, b=-1, c=4

∴ Discriminant = b² - 4ac

                      D = (-1)² -4(1)(4)

                      D = 1-16

                      D =-15<0

Since D < 0. Therefore, the equation has no real roots.

For x²-x+1 = 0

a = 1, b = -1, c = 1

∴ Discriminant = b² - 4ac

                      D = (-1)² -4(1)(1)

                      D = 1-4

                      D = -3<0

Since D < 0. Therefore, the equation has no real roots.

(ii) (x² - 3x)² - 16(x² - 3x) - 36 =0

Ans: (x² -3 x)² -16(x² -3 x)-36=0

Put y = x²-3x

⇒ y² - 16y - 36 = 0

⇒ y² - 18y + 2y - 36 = 0

⇒ y(y-18)+2(y-18) = 0

⇒ (y+2)(y-18) =0

Since, y+4 = 0 or y-18 = 0

Then y = -2 or y =18

⇒ x²-3x+2 = 0 or x²-3x-18=0                             

For x²-3x+2 = 0 

⇒ x²-2x-x+2 =0

⇒ x(x-2)-1(x-2) =0

⇒ (x-2)(x-1) =0

Since, x-2 =0 or x-1 = 0

Then x =2 or x =1

For x²-3x-18 = 0

⇒ x²-6x+3x-18 =0

⇒ x(x-6)+3(x-6) =0

⇒ (x-6)(x+3) =0

Since, x-6=0 or x+3 = 0

Then   x =6    or x =-3


7.Solve  (i) $\sqrt {\frac{x}{{x - 3}}} $+$\sqrt {\frac{{x - 3}}{x}} $= $\frac{5}{2}$

Ans:  Put    y =$\sqrt {\frac{x}{{x - 3}}} $ 

⇒ y +$\frac{1}{y}$ = $\frac{5}{2}$

⇒ 2(y² +1) = 5y

⇒ 2y² – 5y + 2 = 0

⇒ 2y² – y – 4y + 2 = 0

⇒ y(2y-1)-2(2y-1) =0

⇒ (y-2)(2y-1) =0

Since, y-2=0 or 2y-1= 0

Then y =2 or y = $\frac{1}{2}$

$\;\sqrt {\frac{x}{{x - 3}}} $ = 2  or $\sqrt {\frac{x}{{x - 3}}} $$\frac{1}{2}$

⇒   $\frac{x}{{x - 3}}$= 4  or $\frac{x}{{x - 3}}$$\frac{1}{4}$                           

For $\frac{x}{{x - 3}}$= 4

⇒      x = 4(x-3) 

⇒      x=4x-12

⇒      3x =12

⇒      3x =12

⇒      x =4

(i) $\frac{x}{{x - 3}}$= $\frac{1}{4}$

⇒      4x = (x-3) 

⇒      4x=x-3

⇒      3x = -3

⇒      x = -1

(ii)$\frac{{2x - 3}}{{x - 1}}$-4$\frac{{x - 1}}{{2x - 3}}$=3

Ans:  Put y =$\frac{{2x - 3}}{{x - 1}}$ 

⇒    y -$\frac{4}{y}$ = 3

⇒    y² -4 = 3y

⇒   y² - 3y - 4 = 0

⇒   y² + y - 4y - 4 = 0

⇒   y(y+1)-4(y-4) =0

⇒   (y+1)(y-4) =0

Since, y-4 = 0 or y+1 = 0

Then y = 4 or y = -1

$\;\;\;\;\;\frac{{2x - 3}}{{x - 1}}\;$ = -1 or $\frac{{2x - 3}}{{x - 1}}$= 4

For $\frac{{2x - 3}}{{x - 1}}\;$ = -1

⇒      2x-3 = -1(x-1) 

⇒      2x-3=-x+1

⇒      3x =4

⇒      x = $\frac{4}{3}$

$\frac{{2x - 3}}{{x - 1}}$=  4

⇒      2x-3 = 4(x-1) 

⇒      2x-3=4x-4

⇒      2x = 1

⇒      x = $\frac{1}{2}$

(iii) $\frac{{3x + 1}}{{x + 1}}$+$\frac{{x + 1}}{{3x + 1}}$=$\frac{5}{2}$

Ans:  Put y =$\frac{{3x + 1}}{{x + 1}}$ 

⇒     y +$\frac{1}{y}$ = $\frac{5}{2}$

⇒    2(y²+1) = 5y

⇒    2y²-5y+2 = 0

⇒    2y²-y-4y+2 = 0

⇒    y(2y-1)-2(2y-1) = 0

⇒    (y-2)(2y-1) = 0

Since, y-2=0 or 2y-1= 0

Then y =2 or y = $\frac{1}{2}$

$\frac{{3x + 1}}{{x + 1}}\;$ = 2 or $\frac{{3x + 1}}{{x + 1}}$ = $\frac{1}{2}$

For  $\;\;\;\;\frac{{3x + 1}}{{x + 1}}\;$ = 2

⇒      3x+1 = 2(x+1) 

⇒      3x+1=2x+2

⇒      x =1

$\frac{{3x + 1}}{{x + 1}}\;$ = $\frac{1}{2}$

⇒      2(3x+1) = x+1 

⇒      6x+2=x+1

⇒      5x = -1

⇒      x =- $\frac{1}{5}$


8. Solve the equation 2x - $\frac{1}{x}$ =7. Write your answer correct to two decimal places.

Ans:  2x - $\frac{1}{x}$ =7

⇒       x + $\frac{1}{x}$= 7

⇒     2 x² - 1 = 7x 

⇒     2 x² -7x-1 = 0

Here, a = 2, b = -7, c = -1

Then     x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 7} \right)\; \pm \;\sqrt {{{\left( { - 7} \right)}^2} - 4\left( 2 \right)\left( { - 1} \right)} }}{{2\left( 2 \right)}}$

⇒ x = $\frac{{7\; \pm \;\sqrt {49 + 8} }}{4}$

⇒ x = $\frac{{7 \pm \;\sqrt {57} }}{4}$

⇒ x = $\frac{{7 \pm \;7.55}}{4}$= $\frac{{7 + 7.55}}{4}or\;\frac{{7 - 7.55}}{4}\;$= 3.64 or -0.14


9. Solve the following equation and give your answer correct to 3 significant figures: 5x² - 3x - 4 = 0

Ans:  5x² - 3x - 4 = 0

Here, a=5, b=-3 , c=-4

 Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒               x = $\frac{{ - \left( { - 3} \right)\; \pm \;\sqrt {{{\left( { - 3} \right)}^2} - 4\left( 5 \right)\left( { - 4} \right)} }}{{2\left( 5 \right)}}$

 ⇒             x = $\frac{{3\; \pm \;\sqrt {9 + 80} }}{{10}}$

 ⇒             x = $\frac{{3 \pm \;\sqrt {89} }}{{10}}$

⇒             x = $\frac{{3 \pm \;9.434}}{{10}}$= $\frac{{3 + \;9.434}}{{10}}or\;\frac{{3 - \;9.434}}{{10}}\;$= 1.243 or -0.643


10. Solve for x using the quadratic formula. Write your answer correctly to two significant figures. (x - 1)² - 3x + 4 = 0

Ans:  (x - 1)² - 3x + 4 = 0

⇒ x² -2x+1- 3x + 4 =0

⇒ x² -5x+5 =0

Here, a =1, b=-5, c=5

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 5} \right)\; \pm \;\sqrt {{{\left( { - 5} \right)}^2} - 4\left( 1 \right)\left( 5 \right)} }}{{2\left( 1 \right)}}$

 ⇒ x = $\frac{{5\; \pm \;\sqrt {25 - 20} }}{2}$

 ⇒ x = $\frac{{5 \pm \;\sqrt 5 }}{2}$

⇒ x = $\frac{{5 \pm \;2.24}}{2}$ = $\frac{{5 + 2.24}}{2}\;or\;\frac{{5 - \;2.24}}{2}\;$ = 3.6 or 1.4


11. Solve the quadratic equation x² - 3(x + 3) = 0; Give your answer correct to two significant figures.

Ans:  x² - 3(x + 3) = 0

⇒ x²-3x-9 = 0

Here, a =1, b=-3, c=-9

 Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 3} \right)\; \pm \;\sqrt {{{\left( { - 3} \right)}^2} - 4\left( 1 \right)\left( { - 9} \right)} }}{{2\left( 1 \right)}}$

 ⇒ x = $\frac{{3\; \pm \;\sqrt {9 + 36} }}{2}$

⇒ x = $\frac{{3 \pm \;3\sqrt 5 }}{2}$

⇒ x = $\frac{{3 \pm \;6.708}}{2}$= $\frac{{3 + 6.708}}{2}\;or\;\frac{{3 - \;6.708}}{2}\;$= 4.9 or -1.9


Exercise 5(E)

Solve each of the Following equations 

1. $\frac{{{\text{2x}}}}{{{\text{x - 3}}}}$ + $\frac{{\text{1}}}{{{\text{2x + 3}}}}$ + $\frac{{{\text{3x + 9}}}}{{\left( {{\text{x - 3}}} \right)\left( {{\text{2x + 1}}} \right)}}$ = 0 Where x ≠ 3 x ≠ -$\frac{{\text{3}}}{{\text{2}}}$

Ans:  For $\frac{{2x}}{{\;x - 3}}$+$\frac{1}{{2x + 3}}$+ $\frac{{3x + 9}}{{\left( {x - 3} \right)\left( {2x + 1} \right)}}$=0

$\frac{{2x\left( {2x + 3} \right) + \left( {x - 3} \right) + 3x + 9}}{{\left( {x - 3} \right)\left( {2x + 3} \right)}}$

$2x\left( {2x + 3} \right) + \left( {x - 3} \right) + 3x + 9$=0

⇒ 4x²+6x+x-3+3x+9=0

⇒ 4x²+10x+6=0

⇒ 2x²+5x+3=0

⇒ 2x²+2x+3x+3=0

⇒ 2x(x+1)+3(x+1)=0

⇒ (x+1)(2x+3)=0

Since, x+1=0 or 2x+3 = 0

⇒ x=-1 or x=-$\frac{3}{2}$(rejected)


2. (2x+3)²=81

Ans:  (2x+3)²=81

⇒    (2x+3)²-81 =0 

⇒     (2x+3)²-(9)2 =0

⇒      (2x+12)(2x-6) =0

Since, 2x+12 =0 or 2x-6 = 0

⇒ 2x = -12 

⇒ 2x=6

Then x =-6 or x =3


3. a²x²-b² = 0

Ans:  a²x²-b²=0

⇒ (ax)²-b²=0

⇒ (ax+b)(ax-b) =0

Since, ax+b =0 or ax-b= 0

⇒ x=-$\frac{b}{a}$  x=$\frac{b}{a}$

Then x =-$\frac{b}{a}$    or x =$\frac{b}{a}$


4. x² - $\frac{{11}}{4}$ x + $\frac{{15}}{8}$ = 0

Ans:  x² - $\frac{{11}}{4}$ x + $\frac{{15}}{8}$ = 0

⇒      8x² - 22 x + 15 = 0

⇒     8x² -12x-10x + 15 = 0

⇒     4x(2x-3) - 5(2x-3) = 0

⇒     (4x-5)(2x-3) =0

Since, 4x-5 =0 or 2x-3 = 0

Then x =$\frac{5}{4}$ or x = $\frac{3}{2}$


5. x + $\frac{4}{x}$ = - 4

Ans:  x + $\frac{4}{x}$ = - 4

⇒ x² + 4 = -4x

⇒ x² + 4x + 4 = 0

⇒ (x+2)² = 0

Since, x+2 = 0

Then x = -2 


6. 2x⁴ - 5x² +3 = 0

Ans:  2x⁴ - 5x² +3 = 0

Put y = x²

⇒ 2y² - 5y +3 = 0

⇒ 2y² - 2y - 3y + 3 = 0

⇒ 2y(y - 1) - 3(y - 1) = 0

⇒ (y - 1)(2y - 3) = 0

Since, 2y - 3 = 0 or y - 1 = 0

Then y = $\frac{3}{2}$ or y = 1

⇒ x² = $\frac{3}{2}$ or x2 = 1                                 

⇒ x² - $\frac{3}{2}$ = 0 or x2 - 1 = 0

\[\left( {x + \sqrt {\frac{3}{2}} } \right)\]\[\left( {x + \sqrt {\frac{3}{2}} } \right)\] = 0 or (x+1) (x-1) = 0

Since, x - $\sqrt {\frac{3}{2}} $ = 0 or x +$\sqrt {\frac{3}{2}} $ = 0 or x - 1 = 0 or x + 1 = 0 

Then x = $\sqrt {\frac{3}{2}} $ or x = -$\sqrt {\frac{3}{2}} $ or x = 1 or x = -1


7. x⁴ - 2x² - 3 = 0

Ans:  x⁴ - 2x² - 3 = 0

Put y = x²

⇒     y² - 2y - 3 =0

⇒     y²-3y+y-3 =0

⇒     y(y-3)+1(y-3) =0

⇒     (y+1)(y-3) =0

Since, y-3 =0 or y+1 = 0

Then y = 3 or y =-1

⇒     x²=3    or  x2 = -1      (Rejected)                                 

⇒     x²-3 = 0

⇒     (x+$\sqrt 3 $)(x-$\sqrt 3 $) =0

Since, x-$\sqrt 3 $ =0 or x+$\sqrt 3 $ =0

Then x=$\sqrt 3 $ or x= -$\sqrt 3 $


8. Solve 9 $\left( {{x^2} + \frac{{1\;}}{{\;{x^2}}}} \right)$ - 9 $\left( {x + \frac{1}{x}} \right)$- 52 = 0

Ans:  9 $\left( {{x^2} + \frac{{1\;}}{{\;{x^2}}}} \right)$ - 9 $\left( {x + \frac{1}{x}} \right)$- 52 = 0

Let x + $\frac{1}{x}$ = y

Squaring on both sides,

x² + $\frac{{1\;}}{{\;{x^2}}}$ + 2 = y²

⇒ x² + $\frac{{1\;}}{{\;{x^2}}}$= y²-2 

Hence the equation becomes,

⇒     9(y²-2)-9y-52 =0

⇒     9y²-9y-70 =0

⇒     9y²-30y+21y-70 =0

⇒     3y(3y-10)+7(3y-10) =0

⇒     (3y+7)(3y-10) =0

Since, 3y+7 =0 or 3y-10 = 0

⇒ y = - $\frac{7}{3}$ or y = $\frac{{10}}{3}$

x + $\frac{1}{x}$ = - $\frac{7}{3}$ or x + $\frac{1}{x}$ = $\frac{{10}}{3}$

For $\;\;\;x + \frac{1}{x} =  - \;\frac{7}{3}\;$ 

⇒     3( x2+1)=-7x


⇒      3x2+7x+3=0

Then         x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

  ⇒             x = $\frac{{ - \left( 7 \right)\; \pm \;\sqrt {{{\left( 7 \right)}^2} - 4\left( 3 \right)\left( 3 \right)} }}{{2\left( 3 \right)}}$

 ⇒             x  = $\frac{{ - 7\; \pm \;\sqrt {49 - 36} }}{6}$           

 ⇒              x  = $\frac{{ - 7\; \pm \;\sqrt {13} }}{6}$


x+$\frac{1}{x}$ =$\frac{{10}}{3}$

⇒ 3x2-10x+3 =0

⇒3x2-9x-x+3 =0

⇒3x(x-3)-1(x-3) =0

⇒ (x-3)(3x-1) =0

Hence, x -3=0          or 3x-1 =0 

             x=3          or x = $\frac{1}{3}$


9.Solve 2(x2 +$\frac{{1\;}}{{\;{x^2}\;\;}}$) - (x+$\frac{1}{x}$)=11

Ans:  2(x2 +$\frac{{1\;}}{{\;{x^2}\;\;}}$) -(x+$\frac{1}{x}$)-11=0

Let  x+$\frac{1}{x}$=y

Squaring on both sides,

x2 +$\frac{{1\;}}{{\;{x^2}\;\;}}$+2 = y2

⇒x2 +$\frac{{1\;}}{{\;{x^2}\;\;}}$= y2-2 

Hence the equation becomes,

⇒      2(y2-2)-y-11 =0

⇒      2y2-y-15 =0

⇒      2y2-6y+5y-15 =0

⇒      2y(y-3)+5(y-3) =0

⇒      (2y+5)(y-3) =0

Since,  2y+5 =0 or y-3 = 0

⇒       y =- $\frac{5}{2}$or  y =3

 x+$\frac{1}{x}$=- $\frac{5}{2}$or  x+$\frac{1}{x}$ =3

For  $\;\;\;x + \frac{1}{x} =  - \;\frac{5}{2}\;$ 

⇒     2( x2+1)=-5x

⇒      2x2+5x+2=0

⇒      2x2+4x+x+2=0

⇒      2x(x+2)+1(x+2) =0

⇒      (2x+1)(x+2) =0

Hence, x +2=0          or  2x+1 =0 

             x=-2          or x =- $\frac{1}{2}$

$\;\;\;x + \frac{1}{x} = 3\;$ 

⇒      x2+1=3x

⇒      x2-3x+1=0

Then         x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

  ⇒             x = $\frac{{ - \left( { - 3} \right)\; \pm \;\sqrt {{{\left( { - 3} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$

 ⇒             x  = $\frac{{3\; \pm \;\sqrt {9 - 4} }}{2}$           

 ⇒              x  = $\frac{{3\; \pm \;\sqrt 5 }}{2}$


10.Solve (x2 +$\frac{{1\;}}{{\;{x^2}\;\;}}$) -3 (x+$\frac{1}{x}$)-2=0

Ans:  (x2 +$\frac{{1\;}}{{\;{x^2}\;\;}}$) -3(x+$\frac{1}{x}$)-2=0

Let  x+$\frac{1}{x}$=y

Squaring on both sides,

x2 +$\frac{{1\;}}{{\;{x^2}\;\;}}$+2 = y2

⇒x2 +$\frac{{1\;}}{{\;{x^2}\;\;}}$= y2-2 

Hence the equation becomes,

⇒      (y2-2)-3y-2 =0

⇒      y2-3y-4 =0

⇒      y2-4y+y-4 =0

⇒      y(y-4)+1(y-4) =0

⇒      (y+1)(y-4) =0

Since,  y+1 =0 or y-4 = 0

⇒         y =-1   or  y =4

 x+$\frac{1}{x}$=-1or  x+$\frac{1}{x}$ =4

                      

For  $\;\;\;x + \frac{1}{x} =  - 1\;$ 

⇒     ( x2+1)=-x


⇒      x2+x+1=0

∴ Discriminant = b2 - 4ac

                         = (1)2 -4(1)(1)

                         = 1-4

                         = -3 < 0 

Since D <0. Therefore, the equation has no real roots.

 x+$\frac{1}{x}$ =4

⇒ x2-4x+1 =0

Then         x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

  ⇒             x = $\frac{{ - \left( { - 4} \right)\; \pm \;\sqrt {{{\left( { - 4} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$

 ⇒             x  = $\frac{{4\; \pm \;\sqrt {16 - 4} }}{2}$           

 ⇒              x  = $\frac{{4\; \pm \;\sqrt {12} }}{2}$= $\frac{{4\; \pm 2\;\sqrt 3 }}{2}$= 2$ \pm \sqrt 3 $


11.Solve (x2 +5x+4)(x2+ 5x+6)=120

Ans:  (x2 +5x+4)(x2+ 5x+6)=0

Put    y = x2+5x+4

        (y)(y+2)=120

⇒     y2 +2y-120 =0

⇒    y2 +12y-10y-120 =0

⇒      y(y+12)-10(y+12) =0

⇒      (y-10)(y+12) =0

Since,  y-10=0 or y+12 = 0

Then   y = 10    or y=-12

⇒      x2 +5x+4 =10    or  x2 +5x+4=-12

 ⇒      x2 +5x-6 =0    or  x2 +5x+16=0                          

For  x2 +5x-6 =0

⇒      x2+6x-x-6 =0

⇒      x(x+6)-1(x+6) =0

⇒      (x-1)(x+6) =0

Since,  x+6 =0 or x+1 = 0

Then   x =-6    or x =1

For  x2 +5x+16=0       

a =1 , b=5, c=16

∴ Discriminant = b2 - 4ac

                      D = (5)2 -4(1)(16)

                      D = 25-64

                      D =-39<0

Since D < 0. Therefore, the equation has no real roots.


12. Solve each of the following equations, giving answer upto two decimal places.

(i) x² - 5x -10=0

Ans:  2x² -10x+5=0

Here, a = 2, b = -10, c = 5

Then     x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( { - 10} \right)\; \pm \;\sqrt {{{\left( { - 10} \right)}^2} - 4\left( 2 \right)\left( 5 \right)} }}{{2\left( 2 \right)}}$

⇒ x = $\frac{{10\; \pm \;\sqrt {100 - 40} }}{4}$

⇒ x = $\frac{{10 \pm \;\sqrt {60} }}{4}$

⇒ x = $\frac{{10 \pm \;2\sqrt {15} }}{4}$= $\frac{5}{2} \pm \frac{1}{2}\;\sqrt {15} $ = $2.5 \pm \frac{1}{2}\;\left( {3.9} \right)$= 4.44 or 0.56

(ii) 3x² - x - 7 =0

Ans:  4x + $\frac{6}{x}$ + 6 = 0

 ⇒ 4x² + 13x + 6 = 0

Here, a = 4, b = 13, c = 6

Then x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

⇒ x = $\frac{{ - \left( {13} \right)\; \pm \;\sqrt {{{\left( {13} \right)}^2} - 4\left( 4 \right)\left( 6 \right)} }}{{2\left( 4 \right)}}$

⇒ x = $\frac{{ - \left( {13} \right)\; \pm \;\sqrt {169 - 96} }}{8}$

⇒ x = $\frac{{ - 13 \pm \;\sqrt {73} }}{8}$

⇒ x = $\frac{{ - 13 + \;\sqrt {73} }}{8}$or $\frac{{ - 13 - \;\sqrt {73} }}{8}$ = $\frac{{ - 13 + 8.54}}{8}or\;\frac{{ - 13 - 8.54}}{8}\;$=-0.56 or -2.69


13. Solve. $\left( {\frac{{\text{x}}}{{{\text{x + 2}}}}} \right)$2 - 7$\left( {\frac{{\text{x}}}{{{\text{x + 2}}}}} \right)$ + 12 = 0, x$ \ne $2

Ans:  ${\left( {\frac{x}{{x + 2}}} \right)^2}$- 7 $\left( {\frac{x}{{x + 2}}} \right)$ + 12 = 0, x$ \ne $2

Let y = $\frac{x}{{x + 2}}$

⇒      y²-7y+12 =0

⇒      y²-4y-3y+12 =0

⇒      y(y-4)-3(y-4) =0

⇒      (y-4)(y-3) =0

Since, y-4=0 or y-3 = 0

Then, y =4 or y =3

$\frac{x}{{x + 2}}$= 4 or $\frac{x}{{x + 2}}$= 3

$\frac{x}{{x + 2}}$= 4 or $\frac{x}{{x + 2}}$ = 3                           

For $\frac{x}{{x + 2}}$ = 4

⇒      x = 4(x+2) 

⇒      x = 4x+8

⇒      -3x = 8

⇒      x = - $\frac{8}{3}$

For $\frac{x}{{x + 2}}$ = 3

⇒      x = 2(x+2) 

⇒      x=3x+6

⇒      -2x =6

⇒      x = -3


14. Solve:

(i) x² - 11x - 12 =0; when x $ \in $N

Ans:  x²-11x-12 =0

⇒      x²-12x+x-12 =0

⇒      x(x-12)+1(x-12) =0

⇒      (x+1)(x-12) =0

Since, x-12=0 or x+1 = 0

Then, x =12   or x =-1

As x $ \in $N x =12

(ii) x2 - 4x - 12 =0; when x$ \in $ I

Ans:  x2 - 4x - 12 = 0

⇒      x2 - 2x + 6x - 12 = 0

⇒      x(x-2)+6(x-2) = 0

⇒      (x+6)(x-2) = 0

Since,  x-2 = 0 or x+6 = 0

Then, x =2 or x =-6

As x $ \in $

x =2 or x =-6

(iii) 2x² - 9x + 10 = 0; when x $ \in $Q

Ans:  2x²-9x+10 =0

⇒      2x²-4x-5x-10 =0

⇒      2x(x-2)-5(x-2) =0

⇒      (2x-5)(x-2) =0

Since, 2x-5=0 or x-2 = 0

Then, x =$\frac{5}{2}$  or x =2

As x $ \in $

x =$\frac{5}{2}$ or x = 2


15. (a+b)x²-(a+b)x-6 = 0

Ans:  (a+b)2x²-(a+b)x-6 = 0

⇒     (a+b)2x²-3(a+b)x+2(a+b)x-6 = 0

⇒      (a+b)x[(a+b)x-3]+2[(a+b)x-3] = 0

⇒      [(a+b)x-3] [(a+b)x+2] = 0

Since, (a+b)x-3 = 0 or (a+b)x+2 = 0

Then x =$\frac{3}{{a + b}}$ or x = - $\frac{2}{{a + b}}$ 


16. $\frac{1}{p}$ + $\frac{1}{q}$ + $\frac{1}{x}$ = $\frac{1}{{x + p + q}}$

Ans:  For $\frac{1}{p}$+$\frac{1}{q}$+$\frac{1}{x}$= $\frac{1}{{x + p + q}}$

$\frac{1}{p}$+$\frac{1}{q}$+$\frac{1}{x}$- $\frac{1}{{x + p + q}}$ = 0

$\frac{{q + p}}{{pq}}$+ $\frac{{x + p + q - x}}{{\left( x \right)\left( {x + p + q} \right)}}$= 0

⇒ (q+p)(x)(x+p+q)+(p+q)(pq)=0

⇒ (p+q)[x²+(p+q)x+pq]

⇒ x²+px+qx+pq = 0

⇒      x(x+p)+q(x+p) = 0

⇒      (x+p)(x+q) =0

Since, x+p = 0 or x+q = 0

Then   x=-p or x=-q 


17. Solve: (i) (x)(x + 1)+ (x+2)(x+3)=42

Ans:  (x)(x +1)+(x+2)(x+3) = 42

⇒      x² + x + x2+2x+3x+6 = 42

⇒      2x²+6x-36 = 0

⇒      x²+3x-18 = 0

⇒      x²+6x-3x-18 = 0

⇒      x(x+6)-3(x+6) = 0

⇒      (x+6)(x-3) = 0

Since, x-6 = 0 or x-3 = 0

Then x=-6 or x=3 

(ii)$\frac{1}{{x + 1}}$-$\frac{2}{{x + 2}}$= $\frac{3}{{x + 3}}$- $\frac{4}{{x + 4}}$

Ans:  For $\frac{1}{{x + 1}}$-$\frac{2}{{x + 2}}$= $\frac{3}{{x + 3}}$- $\frac{4}{{x + 4}}$

$\frac{{x + 2 - 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}}$= $\frac{{3\left( {x + 4} \right) - 4\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x + 4} \right)}}$

$\frac{{ - x}}{{\left( {x + 1} \right)\left( {x + 2} \right)}}$= $\frac{{ - x}}{{\left( {x + 3} \right)\left( {x + 4} \right)}}$

⇒ -x(x+3)(x+4)=-x(x+1)(x+2)

⇒ -x(x2+7x+12)=-x(x2+3x+2)

⇒ -x(4x+10)=0

Since,  x=0 or 4x+10 = 0

⇒ x=0 or x=-$\frac{5}{2}$


18. For each equation, given below, find the value of m so that the equation has equal roots. Also, the solution of each equation

(i) (m-3)x² -4x +1 =0

Ans:  Since, the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b2 - 4ac =0

   Here, a=m-3, b=-4, c = 1

    D = (-4)² -4(m-3)(1) = 0

⇒ 16-4m+12 =0

⇒ 16-4m+12 =0

⇒ m= 7

4x²-4x+1 = 0

⇒ (2x-1)² =0

Since, 2x-1 =0 

Then x =$\frac{1}{2}$

(ii) 3x²+12x+(m+7)=0

Ans:  Since the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b² - 4ac = 0

   Here, a = 3, b=12, c=m+7

   D = (12)² -4(3)(m+7) = 0

⇒ 144 -12m-84= 0

⇒ 60 = 12m

⇒ m = 5

3x²+12x+12 =0

⇒ x²+4x+4 =0

⇒      (x+2)² = 0

Since, x+2 = 0 

Then x =-2

(iii) x²-(m+2)x +(m+5)=0

Ans:  Since the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b2 - 4ac =0

   Here, a = 1, b = -(m+2), c = m+5

    D = (m+2)² -4(m+5)(1) = 0

⇒ (m)² + 4m + 4 - 4(m+5) = 0

⇒ m² -16= 0

⇒ (m-4)(m+4)= 0

Since, m-4 =0 or m+4 = 0

Then m =4 or m =-4

Thus, the values of m are 4 and -4


19. Without solving the following quadratic equation, find the value of 'p' for which the given equation has real and equal roots. px² - 4x +3 = 0

Ans:  Since, the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b² - 4ac = 0

Here, a = p, b = -4, c = 3

D = (-4)2 -4(p)(3) = 0

⇒ 16-12p = 0

⇒ p= $\frac{4}{3}$


20.Without solving the following quadratic equation, find the value of 'm' for which the given equation has real and equal roots.x² -2 (m-1)x +(m+5) =0

Ans:  Since, the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b² - 4ac =0

   Here, a = 1, b = 2(m -1), c = m+5

    D = (2m-2)² -4(m+5)(1) = 0

⇒ (2m)² -8m+4-4(m+5)= 0

⇒ 4m² - 12m – 16 = 0

⇒ m² - 3m – 4 = 0

⇒ m² - 4m + m – 4 = 0

⇒ m(m-4) + 1(m-4) = 0

⇒ (m-4)(m+1)= 0

Since, m-4 = 0 or m+1 = 0

Then m = 4 or m = -1

Thus, the values of m are 4 and -1 


Exercise 5(F)

1. (i)Solve : (x+5)(x-5)=24 

Ans:   (x+5)(x-5)=24

⇒      x²-24 =25

⇒      x²-49=0

⇒      (x+7)(x-7) =0

Since, x-7 =0 or x+7 = 0

Then x =7   or x =-7

(ii) 3x² -2( $\sqrt 6 $ )x+2=0

Ans:  3x² -2($\sqrt 6 $ )x+2=0

⇒     3x² - ( $\sqrt 6 $ )x-( $\sqrt 6 $ )x+2 = 0

⇒      $\sqrt 3 $x($\sqrt 3 $x -$\sqrt 2 $ )- $\sqrt 2 $( $\sqrt 3 $ x- $\sqrt 2 $) = 0

⇒       ( $\sqrt 3 $ x - $\sqrt 2 $ )² = 0

Since, $\sqrt 3 $ x - $\sqrt 2 $ = 0

Then x =$\sqrt {\frac{2}{3}} $

(iii) 3 $\sqrt 2 $ x² -5x+ $\sqrt 2 $ = 0

Ans:  3 $\sqrt 2 $ x²-5x+ $\sqrt 2 $ = 0

⇒     3 $\sqrt 2 $ x² - 6x+x+ $\sqrt 2 $ =0

⇒       $3\sqrt 2 $x(x -$\sqrt 2 $)+1(x-$\sqrt 2 $)=0

⇒        (3$\sqrt 2 $x -1) (x -$\sqrt 2 $) = 0

Since, 3$\sqrt 2 $x -1 =0 or x -$\sqrt 2 $ =0

Then   x = $\frac{1}{{3\sqrt 2 }}$ or x =$\sqrt 2 $

(iv)2x - 3 = $\sqrt {2\;{x^2}\; - \;2x\; + \;21} $

Ans:  Squaring on both the sides, we get

(2x - 3)² = 2x2 - 2x + 21

⟹ 4x² - 12x + 9 = 2x2 - 2x + 21

⟹ 2x² - 10x - 12 = 0

⟹ x² - 5x - 6 = 0 …..Dividing equation by 2

⟹ x² - 6x + x - 6 = 0

⟹ x(x - 6) + 1(x - 6) = 0

⟹ (x - 6)(x + 1) = 0

⟹ (x - 6) = 0 or (x + 1) = 0

⟹ x = 6 or x = -1


2. One root of the quadratic equation 8x2+ mx+ 15 = 0 is$\frac{3}{4}$ . Find the value of m. Also, find the other root of the equation. 

Ans:  For quadratic equation is 8x2 + mx + 6 = 0 One of the roots of is $\frac{3}{4}$, so it satisfies it

8 ${\left( {\frac{3}{4}} \right)^2}$+ m $\left( {\frac{3}{4}} \right)$ + 15 = 0

⇒ 8 $\left( {\frac{9}{{16}}} \right)$ + m $\left( {\frac{3}{4}} \right)$ + 15 = 0

$\frac{9}{2}$ + m $\left( {\frac{3}{4}} \right)$ + 15 = 0

⇒ m $\left( {\frac{3}{4}} \right)$ = - $\frac{{39}}{2}$

⇒ m= -26

So the equation becomes 8x²-26x+15 = 0

8x²-26x+15 = 0

⇒    8x²-20x-6x+15 = 0

⇒    4x(2x-5)-3(2x-5) = 0

⇒    (4x-3)(2x-5) = 0

Since, (4x-3)=0 or 2x-5 = 0

Then   x =$\frac{3}{4}$     or x =$\frac{5}{2}$

Hence the other root is $\frac{5}{2}$


3. One root of the quadratic equation x²+ (3-2a)x-6a = 0 is -3, find its other root. 

Ans:  For quadratic equation is x²+ (3-2a)x - 6a = 0 One of the roots of  is -3, so it satisfies it

⇒    x² + 3x - 2ax - 6a = 0

⇒    x(x+3)-2a(x+3) = 0

⇒    (x+3)(x-2a) = 0

Since, (x+3)=0 or x-2a = 0

Then x = -3 or x = 2a

Hence, the other root is 2a.


4. If p-15 =0 and 2x²+px+25 = 0 find the values of x. 

Ans:  Given p-15 =0 i.e p =15

So, the given quadratic equation becomes,

2x² + 15x + 25 = 0

⇒      2x²+10x+5x+25 =0

⇒      2x(x+5)+5(x+5) =0

⇒      (2x+5)(x+5) =0

Since, 2x+5=0 or x+5 = 0

Then x = -$\frac{5}{2}$ or  x = -5.


5. Find the solution of the equation 2x2-mx-25n = 0; if and m+5 =0 & n-1=0 

Ans:  Given quadratic equation is 2x²-mx-25n = 0

Also, given and m+5 =0 & n-1=0 

⇒   m = -5 and n =1

So, the given quadratic equation becomes,

2x²+15x-25 = 0

⇒      2x2+10x-5x-25 =0

⇒      2x(x+5)-5(x+5) =0

⇒      (2x-5)(x+5) =0

Since, 2x-5=0 or x+5 = 0

Then x = $\frac{5}{2}$ or x = -5.

Hence, the solution of given quadratic equation are $\frac{5}{2}$ and -5.


6. If m and n are roots of the equation $\frac{1}{x}$-$\frac{1}{{x - 2}}$= 3 where x ≠ 0 and x ≠ 2; find m × n.

Ans:  Given quadratic equation is $\frac{1}{x}$-$\frac{1}{{x - 2}}$= 3

For $\frac{4}{{x + 2}}$-$\frac{1}{{x + 3}}$= 3

$\frac{{x - 2 - x}}{{\left( x \right)\left( {x - 2} \right)}}$=3 

$\frac{{ - 2}}{{\left( x \right)\left( {x - 2} \right)}}$=3

⇒-2=3(x2-2x)

⇒ 3x2-6x+2=0

Here the roots of the equation aare m and n,

m x n = $\frac{{constant\;term\;}}{{Coefficient\;of\;{x^2}\;\;}}$= $\frac{2}{3}$


7. Solve, using formula: x² + x - (a+2)(a+1) = 0

Ans:  Given quadratic equation is x² + x - (a+2)(a+1)

Using quadratic formula,

Here, A = 1, B = 1, C = -(a+2)(a+1)

Then x = $\frac{{ - B\; \pm \;\sqrt {{B^2} - 4AC} }}{{2A}}$

⇒            x = $\frac{{ - \left( 1 \right)\; \pm \;\sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right) - \left( {a + 2} \right)\left( {a + 1} \right)} }}{{2\left( 1 \right)}}$

 ⇒             x = $\frac{{ - 1\; \pm \;\sqrt {1 + 4({a^2} + 3a + 2)} }}{{2\left( 1 \right)}}$

 ⇒             x = $\frac{{ - 1\; \pm \;\sqrt {4{a^2} + 12a + 9} }}{{2\left( 1 \right)}}$

⇒             x = $\frac{{ - 1\; \pm \;\sqrt {{{(2a + 3)}^2}} }}{2}$

⇒             x = $\frac{{ - 1\; \pm \left( {2a + 3} \right)}}{2}$

 ⇒             x = $\frac{{ - 1\; + \;2a + 3}}{2}$or $\frac{{ - 1\; - \;2a - 3}}{2}$

⇒              x = a + 1 or x = -a - 2 = -(a + 2)


8. Solve the quadratic equation 8x²-14x+3 =0

(i) When x ∈ I (integers)

(ii) When x ∈ Q (rational numbers) 

Ans:  8x²-14x+3 =0

⇒      8x²-12x-2x+3 =0

⇒      4x(2x-3)-1(2x-3) =0

⇒      (4x-1)(2x-3) =0

Since, 4x-1=0 or 2x-3 = 0

Then x = $\frac{1}{4}$ or x =$\frac{3}{2}$

(i) When x ∈ I, the equation has no roots

(ii) When the roots of are equation x = $\frac{1}{4}$& x =$\frac{3}{2}$


9. Find the value of m for which the equation(m+4)x2 +(m+1)x +1 =0 has real and equal roots. 

Ans:  Since the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b2 - 4ac =0

   Here a =m+1, b=(m+1), c = 1

    D = (m+1)² -4(m+4)(1) = 0

⇒ (m)² +2m+1-4(m+4)= 0

⇒ m² – 2m – 15 = 0

⇒ m² -5m+3m-15 = 0

⇒ m(m-5)+3(m-5) = 0

⇒ (m-5)(m+3) = 0

Since, m-5 = 0 or m+3 = 0

Then m = 5 or m =-3

Thus, the values of m are 5 and -3


10. Find the values of m for which equation 3x² + mx + 2 = 0 has equal roots. Also, find the roots of the given equation. 

Ans:  Since the equation has equal roots. Therefore, the discriminant will be zero.

∴ Discriminant = b² - 4ac = 0

   Here, a = 3, b = m, c = 2

    D = (m)² - 4(3)(2) = 0

⇒ m² – 24 = 0

⇒ (m)² - (2 $\sqrt 6 $ )2 = 0

⇒ (m - 2 $\sqrt 6 $ )(m + 2 $\sqrt 6 $ ) = 0

Since, m-2$\sqrt 6 $ =0 or m+2$\sqrt 6 $= 0

Then m =2$\sqrt 6 $ or m =-2$\sqrt 6 $

Thus, the values of m are 2$\sqrt 6 $ and -2$\sqrt 6 $

For, m = 2$\sqrt 6 $,

3x² +2$\sqrt 6 $x+2 =0

⇒      ($\sqrt 2 $x)² + 2$\sqrt 3 \sqrt 2 $ x + ( $\sqrt 2 $

⇒      ( $\sqrt 3 $ x + $\sqrt 2 $ )² = 0

⇒      Since, $\sqrt 3 $ x + $\sqrt 2 $ = 0 Then x = - $\frac{{\sqrt 2 }}{{\sqrt 3 }}$

For, m = -2$\sqrt 6 $,

  3x² -2$\sqrt 6 $x+2 =0

⇒      ( $\sqrt 2 $ x)² -2$\sqrt 3 \sqrt 2 $ x + ( $\sqrt 2 $

⇒      ( $\sqrt 3 $ x - $\sqrt 2 $ )² = 0

⇒      Since, $\sqrt 3 $ x - $\sqrt 2 $ = 0 Then x = $\frac{{\sqrt 2 }}{{\sqrt 3 }}$


11. Find the value of k for which equation 4x² +8x+-k=0 has real roots. 

Ans:  For Given quadratic equation to have real roots its discriminant is greater than or equal to zero,

∴ Discriminant = b² - 4ac =0

   Here  a = 3, b = m, c = 2

    D = (8)² -4(4)(-k) $ \geqslant $ 0

⇒ 64 + 16k $ \geqslant $ 0

⇒ 16k $ \geqslant $ -64

⇒ k $ \geqslant $ -4

Hence, the given quadratic equation has real roots for k $ \geqslant $-4.


12. Find, using quadratic formula, the roots of the following quadratic equations, if they exist

(i) 3x² - 5x + 2 = 0

Ans:  3x² - 5x +2 = 0

Here, a = 3, b = -5 , c = 2

 Then         x = $\frac{{ - b\; \pm \;\sqrt {{b^2} - 4ac} }}{{2a}}$

  ⇒             x = $\frac{{ - \left( { - 5} \right)\; \pm \;\sqrt {{{\left( { - 5} \right)}^2} - 4\left( 3 \right)\left( 2 \right)} }}{{2\left( 3 \right)}}$

 ⇒             x = $\frac{{5\; \pm \;\sqrt {25 - 24} }}{6}$

 ⇒           x = $\frac{{5 \pm 1}}{6}$ = $\frac{{5 + \;1}}{6}$ or $\frac{{5\; - \;1}}{6}$ = 1 or $\frac{2}{3}$ 

(ii) x² - 4x +5 = 0

Ans:  Discriminant = b² - 4ac = (-4)² - 4(1)(5) = 16-20 = -4 < 0 

Since D <0. Therefore, the equation has no real roots.


13.Solve : (i)$\frac{1}{{18 - x}}$-$\frac{1}{{18 + x}}$= $\frac{1}{{24}}$ and x > 0.

Ans: For $\frac{1}{{18 - x}}$-$\frac{1}{{18 + x}}$= $\frac{1}{{24}}$

$\frac{{\left( {18 + x} \right) - \left( {18 - x} \right)}}{{\left( {18 + x} \right)\left( {18 - x} \right)}}$= $\frac{1}{{24}}$

$\frac{{2x}}{{\left( {18 + x} \right)\left( {18 - x} \right)}}$= $\frac{1}{{24}}$

⇒ 24(2x)=(18+x)(18-x)

⇒ 48x = (324-x²)

⇒ x²+48x-324=0

⇒ x²+54x-6x-14=0

⇒ x(x+54)-6(x+54)=0

⇒ (x-6)(x+54)=0

Since, x-6=0 or x+54 = 0

⇒ x=6 or x=-54 

(ii) (x -10)$\left( {\frac{{1200}}{x} + 2} \right)$ = 1260 and x < 0.

Ans:  $\left( {\frac{{1200}}{x} + 2} \right)$ (x - 10) =1260

$\left( {\frac{{600 + x}}{x}} \right)$ (x - 10) = 630

⇒ (600 + x)(x - 10) = 630x

⇒ 600x - 6000 + x² -10x = 630x

⇒ x² - 40x - 6000 = 0

⇒ x² + 60x - 100x - 6000 = 0

⇒ x(x+60)-100(x+60) = 0

⇒ (x-100)(x+60) =0

Hence, x -100=0      or x+60 =0 

             x=100          or x = -60

But as x < 0, so x can't be positive. Hence, x=100



Advantages of Vedantu Solutions for Class 10 Mathematics ICSE:


With convenient arrangements by Vedantu students don't need to lose the speed of tackling questions. Suppose you are stuck on a question and assuming you need to skim through the pages of your course readings to comprehend the idea and afterward sort out the arrangement it would break the stream. In addition to the fact that it causes interference is tedious. Furthermore, when you have tests on your head, losing an iota of time can cause losing marks.

 

Settling Mathematics questions is a bit-by-bit process and sticking after a specific problem is probably going to occur. Furthermore, as an inquisitive student, you should know where you committed the error. Going through a heavy course reading isn't simply time taking yet you may now see precisely which place you committed the error. With Vedantu it is extremely basic. With Vedantu arrangements of Class 10, you can see each progression minutely.

 

Vedantu comprehends the problem of students when they are obstructed because of a question and henceforth it intricately clarifies each question with sufficient articulations and postulation so a student doesn't lose marks due to ICSE step marking. Selina Concise is viewed as the base book for the ICSE board’s readiness and Vedantu assists students with endeavoring better.

FAQs on Concise Mathematics Class 10 ICSE Solutions for Chapter 5 - Quadratic Equations

1. What is the significance of the Quadratic Equations section of Mathematics in Class X ICSE?

The sections which are indispensable are as per the following:


Unadulterated Arithmetic, Commercial Mathematics, Algebra, Geometry, Statistics, Trigonometry, Coordinate Geometry, and Mensuration.


With Vedantu's answers for Selina Mathematics for Quadratic Equations Class 10 ICSE, students can snatch great control over business Mathematics.

2. How to plan for the ICSE Mathematics Class 10 for part Quadratic Equations?

The act of different sorts of questions is a vital method for getting ready for the test. Vedantu gives easy learning and comprehension through arrangement books. The arrangement of a question will require information to more than one section of the entire prospectus. Also, students should have this answer for part 1 Quadratic Equations of Selina Concise. Vedantu helps in getting command over the Class X ICSE with a decent score, which eventually opens approaches to new opportunities. Students get the chance to choose streams readily as per their benefit.

3. How is the assessment accomplished for the assignments Class X Mathematics? Furthermore, how might part 1 Quadratic Equations be significant?

The assignments/project work is to be assessed by the subject teacher and by an outer analyst. (The outer analyst may be a teacher chosen by the Head of the school, who could be from the staff, yet not showing the subject in the section/Class. For example, a teacher of Mathematics in an alternate Class. might be assigned as an outer inspector for Class X, Mathematics projects.) The Internal analyst and the outside inspector will assess the assignments uninhibitedly. Out of 20 Marks, the subject teacher (interior inspector ): 10 marks and the outside analyst: 10 marks. These assignments are identified with reality and business Mathematics, and Quadratic Equations is a crucial piece of it.

4. What is the general construction of the Mathematics question paper ICSE?

The ICSE Mathematics for Class X paper will be of more than two hours span carrying a sum of 80 marks and an inner assessment of 20 marks. The test paper of Class 10 ICSE Mathematics will be separated into two sections, 1 and 2.


Section 1 with a sum of 40 marks
Section 2 conveys a sum of 40 marks.


Section I will compromise compulsory short answer questions and in Section II, students need to answer any four out of seven questions.


A significant part of the test paper will convey Quadratic Equations questions and up-and-comers can rehearse better with Selina section Quadratic Equations arrangements by Vedantu.

5. What are the means to follow while planning for part Quadratic Equations of Class X Mathematics?

  • Go through the part of Quadratic Equations completely

  • Solve the questions.

  • If you were unable to move toward it right, go through the Vedantu's answers of Selina for Class X ICSE.

  • If you deal with any issue whatsoever, then, at that point, search for the answer for the question from Vedantu.

Now, you are all set. Students can rehearse coursebook practices with the Vedantu arrangements of Selina for Class X ICSE.