ICSE Class 10 Mathematics Chapter 9 Selina Concise Solutions - Free PDF Download
Matrices are an important concept for the Classification of data in a specific group. A Matrix is a rectangular representation of numbers. It contains some rows and columns.
Access ICSE Selina Solutions for Class 10 Mathematics Chapter 9 - Matrices
Exercise-9 A
1. State, whether the following statements are true or false. If false, give a reason.
(i) If A and B are two matrices of orders $\mathbf{\text{3 }\!\!\times\!\!\text{ 2}}$ and $\mathbf{2\times 3}$ respectively; then their sum A+B is possible.
Ans: The two matrices are compatible for addition or subtraction; only when they have the same order. But the given matrices have different order.
Therefore, the given statement is false.
(ii) The matrices and $\mathbf{{{B}_{2\times 3}}}$ are conformable for subtraction.
Ans: The two matrices are compatible for addition or subtraction; only when they have the same order.
The given matrices have the same order.
Therefore, the given statement is true.
(iii) Transpose of a $\mathbf{2\times 1 matrix \;is \;a\; 2\times 1}$ matrix
Ans: Transpose of a matrix of order $m\times n$ is $n\times m$ order. So, the transpose of a $2\times 1$ matrix is $1\times 2$.
Therefore, the given statement is false.
(iv) Transpose of a square matrix is a square matrix.
Ans: Transpose of any square matrix of order m×m is m×m order.
Therefore, the given statement is true.
(v) A column matrix has many column and only one row.
Ans: As the name suggest, column matrix has only one column. Therefore, the given statement is false.
2. Given: $\mathbf{\text{ }\!\![\!\!\text{ }\begin{matrix} \text{x} & \text{y+2} & \text{3} & \text{z-1} \\ \end{matrix}\text{ }\!\!]\!\!\text{ }\,\text{=}\,\text{ }\!\![\!\!\text{ }\begin{matrix} \text{3} & \text{1} & \text{3} & \text{1} \\ \end{matrix}\text{ }\!\!]\!\!\text{ }}$; find $\mathbf{x,~y~and~z}$.
Ans:
Given $[\begin{matrix} x & y+2 & 3 & z-1 \\ \end{matrix}]\,=\,[\begin{matrix} 3 & 1 & 3 & 1 \\ \end{matrix}]$
If two matrices are equal, their corresponding elements are also equal. Therefore,
x = 3
$y+2=1\Rightarrow y=-1$
$z-1=2\Rightarrow z=3$
Therefore, the value of variables $x,~y~and~z$ are 3, -1 and 3 respectively.
3. Solve for a, b and c ; if:
(i) $[\begin{matrix} \mathbf{-4} & \mathbf{a+5} & \mathbf{3} &\mathbf{ 2} \\ \end{matrix}]\,\,=\,\,[\begin{matrix} \mathbf{ b+4} &\mathbf{ 2} & \mathbf{3} &\mathbf{ C-1} \\ \end{matrix}]$
Ans:
Given, $[\begin{matrix} -4 & a+5 & 3 & 2 \\ \end{matrix}]\,\,=\,\,[\begin{matrix} b+4 & 2 & 3 & C-1 \\ \end{matrix}]$
If two matrices are equal, their corresponding elements are also equal.
Therefore
$-4=b+4\Rightarrow b=-8$
$a+5=2\Rightarrow a=-3$
$c-1=2\Rightarrow c=3$
Therefore the value of variables $a,~b~and~c$ are -3, -8 and 3 respectively.
(ii)$[\begin{matrix} \mathbf{a} & \mathbf{a-b} & \mathbf{b+c} & \mathbf{0} \\ \end{matrix}]\,\,\text{=}\,\,[\begin{matrix} \mathbf{3} & \mathbf{-1} & \mathbf{2} & \mathbf{0} \\ \end{matrix}]$
Ans:
Given, $[\begin{matrix} a & a-b & b+c & 0 \\ \end{matrix}]\,\,=\,\,[\begin{matrix} 3 & -1 & 2 & 0 \\ \end{matrix}]$
If two matrices are equal, their corresponding elements are also equal.
Therefore
a = 3
$a-b=-1\Rightarrow b=a+1$
b = 4
$b+c=2\Rightarrow c=2-b$
c = -2
Therefore the value of variables $a,~b~and~c$ are 3, 4 and -2 respectively.
4. If $\mathbf{A}=\left[ \begin{matrix} \mathbf{8} & \mathbf{-3} \\ \end{matrix} \right]$ and $\mathbf{B}=\left[ \begin{matrix} \mathbf{4} & \mathbf{-5} \\ \end{matrix} \right]$ find
(i)A+B
Ans:
$\mathrm{A=}\left[ \begin{matrix} 8 & -3 \\ \end{matrix} \right]$ and $B=\left[ \begin{matrix} 4 & -5 \\ \end{matrix} \right]$
$A+B=\left[ \begin{matrix} 8 & -3 \\ \end{matrix} \right]+\left[ \begin{matrix} 4 & -5 \\ \end{matrix} \right]$
$=\left[ \begin{matrix} 8+4 & -3-5 \\ \end{matrix} \right]$
$=\left[ \begin{matrix} 12 & -8 \\ \end{matrix} \right]$
(ii) B-A
Ans:
$\mathrm{A=}\left[ \begin{matrix} 8 & -3 \\ \end{matrix} \right]$ and $B=\left[ \begin{matrix}4 & -5 \\ \end{matrix} \right]$
$\mathrm{B-A=}\left[ \mathrm{4 }\!\!~\!\!\text{ -5 }\!\!~\!\!\text{ } \right]\mathrm{-}\left[ \mathrm{8 }\!\!~\!\!\text{ -3 }\!\!~\!\!\text{ } \right]$
$\mathrm{=}\left[ \mathrm{4-8 }\!\!~\!\!\text{ }\,\,\,\,\mathrm{-5+3 }\!\!~\!\!\text{ } \right]$
$\mathrm{=}\left[ \mathrm{-4 }\!\!~\!\!\text{ }\,\,\,\mathrm{-2 }\!\!~\!\!\text{ } \right]$
5. If $\mathbf{A}=\begin{matrix} [\mathbf{2} & \mathbf{5} \\ \end{matrix}\left] ,~\mathbf{B}=\begin{matrix} [\mathbf{1} & \mathbf{4} \\ \end{matrix} \right]\text{ and}\; \mathbf{C= }\!\!~\!\!\text{ }\begin{matrix}[\mathbf{ 6} & \mathbf{-2} \\ \end{matrix}\text{ }\!\!]\!\!\text{ }$, find:
(i)B+C
Ans:
Given, $A=\begin{matrix} [2 & 5 \\ \end{matrix}\left] ,~B=\begin{matrix} [1 & 4 \\ \end{matrix} \right]$ and
$C=\begin{matrix} [6 & -2 \\ \end{matrix}]$
$\mathrm{B+C=}\begin{matrix} \mathrm{ }\!\![\!\!\text{ 1} & \mathrm{4} \\ \end{matrix}\mathrm{ }\!\!]\!\!\text{ +}$ $\begin{matrix} \mathrm{ }\!\![\!\!\text{ 6} & \mathrm{-2} \\ \end{matrix}\mathrm{ }\!\!]\!\!\text{ }$ $\mathrm{=}\begin{matrix} \mathrm{ }\!\![\!\!\text{ 1+6} & \mathrm{4-2} \\ \end{matrix}\left] \mathrm{=}\begin{matrix} \mathrm{ }\!\![\!\!\text{ 7} & \mathrm{2} \\ \end{matrix} \right]\mathrm{ }\!\!~\!\!\text{ }$
(ii) A-C
Ans:
Given, $A=\begin{matrix} [2 & 5 \\ \end{matrix}\left] ,~B=\begin{matrix} [1 & 4 \\ \end{matrix} \right]$ and $C=\begin{matrix} [6 & -2 \\ \end{matrix}]$
A-C = $\left[ \begin{matrix} 2 & 5 \\ \end{matrix} \right]$- $\left[ \begin{matrix} 6 & -2 \\ \end{matrix} \right]$
= $\left[ \begin{matrix} \mathrm{2-}\,\mathrm{6} & \mathrm{5} \\ \end{matrix}\mathrm{+2} \right]\mathrm{=}\left[ \begin{matrix} \mathrm{-4} & \mathrm{7} \\ \end{matrix} \right]$
(iii) A+B-C
Ans:
Given, $A=\begin{matrix} [2 & 5 \\ \end{matrix}\left] ,~B=\begin{matrix} [1 & 4 \\ \end{matrix} \right]$ and $C=\begin{matrix} [6 & -2 \\ \end{matrix}]$
$A+B-C=\left[ \begin{matrix} \text{2} & \text{5} \\ \end{matrix} \right]+\left[ \begin{matrix} \text{1} & \text{4} \\ \end{matrix} \right]-\left[ \begin{matrix} \text{6} & \text{-2} \\ \end{matrix} \right]$
$=\left[ \begin{matrix} \text{2+1-6} & \text{5+4+2} \\\end{matrix} \right]=\left[ \begin{matrix} \text{-3} & \text{11} \\\end{matrix} \right]$
(iv) $\mathbf{A}-\mathbf{B}+\mathbf{C}$
Ans:
Given, $A=\left[ \begin{matrix} \text{2} & \text{5} \\ \end{matrix} \right],\,\text{B=}\left[ \begin{matrix} \text{1} & \text{4} \\ \end{matrix} \right]\,\,and\,C=\left[ \begin{matrix} \text{6} & \text{-2} \\\end{matrix} \right]$
$A-B+C=\left[ \begin{matrix} \text{2} & \text{5} \\\end{matrix} \right]-\left[ \begin{matrix} \text{1} & \text{4} \\\end{matrix} \right]+\left[ \begin{matrix} \text{6} & \text{-2} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{2-1+6} & \text{5-4-2} \\\end{matrix} \right]=\left[ \begin{matrix} \text{7} & \text{-1} \\\end{matrix} \right]$
6. Wherever possible write each of the following as a single matrix.
(i)$ \left[ \begin{matrix} \mathbf{ 1} &\mathbf{ 2} & \mathbf{3} & \mathbf{4} \\ \end{matrix} \right]+\left[ \begin{matrix} \mathbf{ -1} & \mathbf{-2} &\mathbf{ 1} &\mathbf{ -7} \\\end{matrix} \right]$
Ans:
$\begin{align} & \left[ \begin{matrix} \text{1} & \text{2} & \text{3} & \text{4} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \text{-1} & \text{-2} & \text{1} & \text{-7} \\\end{matrix} \right]=\left[ \begin{matrix} \text{1-1} & \text{2-2} & \text{3+1} & \text{4-7} \\\end{matrix} \right] \\ & \text{=}\,\left[ \begin{matrix} \text{0} & \text{0} & \text{4} & \text{-3} \\\end{matrix} \right] \\ \end{align}$
(ii) $\left[ \begin{matrix} \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} &\mathbf{ 7} \\\end{matrix} \right]+\left[ \begin{matrix} \mathbf{0} & \mathbf{2} &\mathbf{ 3} & \mathbf{6} &\mathbf{ -1} & \mathbf{0} \\\end{matrix} \right]$
Ans:
$\begin{align} & \left[ \begin{matrix} \text{2} & \text{3} & \text{4} & \text{5} & \text{6} & \text{7} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \text{0} & \text{2} & \text{3} & \text{6} & \text{-1} & \text{0} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{2-0} & \text{3-2} & \text{4-3} & \text{5-6} & \text{6+1} & \text{7-0} \\\end{matrix} \right] \\ & \text{=}\,\,\left[ \begin{matrix} \text{2} & \text{1} & \text{1} & \text{-1} & \text{7} & \text{7} \\\end{matrix} \right] \\ \end{align}$
(iii) $\left[ \begin{matrix} \mathbf{0} & \text{1} & \mathbf{2} & \mathbf{4} & \mathbf{6} & \mathbf{7} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \mathbf{3} & \mathbf{4} & \mathbf{6} & \mathbf{8} \\\end{matrix} \right]$
Ans:
$\left[ \begin{matrix} \text{0} & \text{1} & \text{2} & \text{4} & \text{6} & \text{7} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \text{3} & \text{4} & \text{6} & \text{8} \\\end{matrix} \right]$ not possible
Two matrices with different order cannot be unified as one matrix by the operation of addition.
7. Find $\mathbf{x}~\mathbf{and}~\mathbf{y}$ from the following equations:
(i) $\left[ \begin{matrix} \mathbf{ 5} & \mathbf{ 2} & \mathbf{ -1} & \mathbf{ y-1} \\\end{matrix} \right]-\left[ \begin{matrix} \mathbf{1} & \mathbf{ x-1} & \mathbf{2} & \mathbf{-3} \\\end{matrix} \right]=\left[ \begin{matrix} \mathbf{4} & \mathbf{7} & \mathbf{-3} & \mathbf{2} \\\end{matrix} \right]$
Ans:
$\left[ \begin{matrix} \text{5} & \text{2} & \text{-1} & \text{y-1} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{1} & \text{x-1} & \text{2} & \text{-3} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{4} & \text{7} & \text{-3} & \text{2} \\\end{matrix} \right]$
$\begin{align} & \left[ \begin{matrix} \text{5-1} & \text{2-(x-1)} & \text{-1-2} & \text{y-1-(-3)} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{4} & \text{7} & \text{-3} & \text{2} \\\end{matrix} \right] \\ & \left[ \begin{matrix} \text{4} & \text{3-x} & \text{-3} & \text{y+2} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{4} & \text{7} & \text{-3} & \text{2} \\\end{matrix} \right] \\ \end{align}$
Now by comparing the corresponding elements we have,
$\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-4} \\\end{matrix} \right]$
Therefore the value of $\text{x }\!\!~\!\!\text{ and }\!\!~\!\!\text{ y}$ is $-4\text{ }\!\!~\!\!\text{ and }\!\!~\!\!\text{ }0$ respectively.
(ii) $\left[ \begin{matrix} \mathbf{-8} & \mathbf{x} \\\end{matrix} \right] + \left[ \begin{matrix} \mathbf{y} & \mathbf{-2} \\\end{matrix} \right]\,\,\text{=}\,\left[ \begin{matrix} \mathbf{-3} & \mathbf{2} \\\end{matrix} \right]$
Ans:
$\left[ \begin{matrix} \text{-8} & \text{x} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \text{y} & \text{-2} \\\end{matrix} \right]\,\,\text{=}\,\left[ \begin{matrix} \text{-3} & \text{2} \\\end{matrix} \right]$
$\left[ \begin{matrix} \text{y-8} & \text{x-2} \\\end{matrix} \right]\,\,\text{=}\,\left[ \begin{matrix} \text{-3} & \text{2} \\\end{matrix} \right]$
By comparing the corresponding elements we have
$y-8=-3\Rightarrow y=5$
$x-2=2\Rightarrow x=4$
Therefore the value of $x~and~y$ are $4~and~5$ respectively.
8. Given: M = $\left[ \begin{matrix} 5 & -3 & -2 & 4 \\\end{matrix} \right]$, find its transpose matrix ${{M}^{t}}$. If possible, find:
(i) $\mathbf{M}+{{\mathbf{M}}^{\mathbf{t}}}$
Ans:
Given: M = $\left[ \begin{matrix} \text{5} & \text{-3} & \text{-2} & \text{4} \\\end{matrix} \right]$
Transpose of matrix M is ${{M}^{t}}$
Mt = $\left[ \begin{matrix} \text{5} & \text{-2} & \text{-3} & \text{4} \\\end{matrix} \right]$
M + Mt = $\left[ \begin{matrix} \text{5} & \text{-3} & \text{-2} & \text{4} \\\end{matrix} \right]$+ $\left[ \begin{matrix} \text{5} & \text{-2} & \text{-3} & \text{4} \\\end{matrix} \right]$
$\begin{align} & =\left[ \begin{matrix} \text{5+5} & \text{-3-2} & \text{-2-3} & \text{4+4} \\\end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{10} & \text{-5} & \text{-5} & \text{8} \\\end{matrix} \right] \\ \end{align}$
(ii) ${{\mathbf{M}}^{\mathbf{t}}}-\mathbf{M}$
Ans:
Given:
Transpose of matrix M is ${{\text{M}}^{\text{t}}}$
Mt = $\left[ \begin{matrix} 5 & -3 & -2 & 4 \\\end{matrix} \right]$
Mt-M= $\left[ \begin{matrix} \text{5} & \text{-2} & \text{-3} & \text{4} \\\end{matrix} \right]$- $\left[ \begin{matrix} \text{5} & \text{-3} & \text{-2} & \text{4} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{5-5} & \text{-2+3} & \text{-3+2} & \text{4-4} \\\end{matrix} \right]$ $\text{=}\left[ \begin{matrix} \text{0} & \text{1} & \text{-1} & \text{0} \\\end{matrix} \right]$
9. Write the additive inverse of matrices A, B and C: where A=$\left[ \begin{matrix} \mathbf{ 6} & \mathbf{-5} \\\end{matrix} \right]$; B=$\left[ \begin{matrix} \mathbf{ -2} & \mathbf{0} &\mathbf{ 4} & \mathbf{-1} \\\end{matrix} \right]$and C=$\left[ \begin{matrix} \mathbf{-7} & \mathbf{4} \\\end{matrix} \right]$
Ans: Given, A=$\left[ \begin{matrix} \text{6} & \text{-5} \\\end{matrix} \right]$; B=$\left[ \begin{matrix} \text{-2} & \text{0} & \text{4} & \text{-1} \\\end{matrix} \right]$ and C=$\left[ \begin{matrix} \text{-7} & \text{4} \\\end{matrix} \right]$
The additive inverse of any matrix is the negative of each element of that matrix. Therefore, Additive inverse of matrix A is –A.
-A = $\left[ \begin{matrix} \text{-6} & \text{5} \\\end{matrix} \right]$
Additive inverse of matrix B is –B
-B = $\left[ \begin{matrix} \text{2} & \text{0} & \text{-4} & \text{1} \\\end{matrix} \right]$
Additive inverse of matrix C is –C
-C = $\left[ \begin{matrix} \text{7} & \text{-4} \\\end{matrix} \right]$
10. Given, A = $\left[ \begin{matrix} \mathbf{ 2} & \mathbf{ -3} \\\end{matrix} \right]$, $B=\left[ \begin{matrix} \mathbf{ 0} & \mathbf{ 2 } \\\end{matrix} \right]$ and $C=\left[ \begin{matrix} \mathbf{ -1} &\mathbf{ 4} \\\end{matrix} \right]$; find the matrix X in each of the following:
(i) $\mathbf{X}+\mathbf{B}=\mathbf{C}-\mathbf{A}$
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{2} & \text{-3} \\\end{matrix} \right]$, $\text{B=}\left[ \begin{matrix} \text{0} & \text{2} \\\end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \text{-1} & \text{4} \\\end{matrix} \right]$X + B = C – A X = C – A – B = $\left[ \begin{matrix} \text{-1} & \text{4} \\\end{matrix} \right]-\left[ \begin{matrix} \text{2} & \text{-3} \\\end{matrix} \right]-\left[ \begin{matrix} \text{0} & \text{2} \\\end{matrix} \right]$
$\begin{align} & =\left[ \begin{matrix} \text{-1-2-0} & \text{4+3-2} \\\end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{-3} & \text{5} \\\end{matrix} \right] \\ \end{align}$
(ii) $\mathbf{A}-\mathbf{X}=\mathbf{B}+\mathbf{C}$
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{2} & \text{-3} \\\end{matrix} \right]$, $\text{B=}\left[ \begin{matrix} \text{0} & \text{2} \\\end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \text{-1} & \text{4} \\\end{matrix} \right]$A – X = B + CX = A – B – C = $\left[ \begin{matrix} \text{2} & \text{-3} \\\end{matrix} \right]-\left[ \begin{matrix} \text{0} & \text{2} \\\end{matrix} \right]-\left[ \begin{matrix} \text{-1} & \text{4} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{2-0+1} & \text{-3-2-4} \\\end{matrix} \right]$ $\text{=}\left[ \begin{matrix} \text{3} & \text{-9} \\\end{matrix} \right]$
11. Given $A=\left[ \begin{matrix} -1 & 0 & 2 & -4 \\\end{matrix} \right]$ and $B=\left[ \begin{matrix} 3 & -3 & -2 & 0 \\\end{matrix} \right]$; find the matrix X in each of the following :
(i) $\mathbf{A}+\mathbf{X}=\mathbf{B}$
Ans:
$\text{A=}\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-4} \\\end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \text{3} & \text{-3} & \text{-2} & \text{0} \\\end{matrix} \right]$
$\text{A}+\text{X}=\text{B}$
$\text{X=B-A=}\left[ \begin{matrix} \text{3} & \text{-3} & \text{-2} & \text{0} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-4} \\\end{matrix} \right]$
$\begin{align} & \text{= }\!\![\!\!\text{ }\begin{matrix} \text{3-(-1)} & \text{-3-0} & \text{-2-2} & \text{0-(-4)} \\\end{matrix}\text{ }\!\!]\!\!\text{ } \\ & \text{=}\left[ \begin{matrix} \text{4} & \text{-3} & \text{-4} & \text{4} \\\end{matrix} \right] \\ \end{align}$
(ii) A-X=B
Ans:
$\text{A=}\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-4} \\\end{matrix} \right]\,\,\text{and}\,\text{B=}\left[ \begin{matrix} \text{3} & \text{-3} & \text{-2} & \text{0} \\\end{matrix} \right]$ $\text{A}-\text{X}=\text{B}$
$\begin{align} & \text{X=A-B=}\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-4} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{3} & \text{-3} & \text{-2} & \text{0} \\\end{matrix} \right] \\ & \text{= }\!\![\!\!\text{ }\begin{matrix} \text{-1-3} & \text{0+3} & \text{2+2} & \text{-4-0} \\\end{matrix}\text{ }\!\!]\!\!\text{ } \\ & \text{=}\left[ \begin{matrix} \text{-4} & \text{3} & \text{4} & \text{-4} \\\end{matrix} \right] \\ \end{align}$
(iii) $\mathbf{X}-\mathbf{B}=\mathbf{A}$
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-4} \\\end{matrix} \right]\,\,\text{and}\,\text{B=}\left[ \begin{matrix} \text{3} & \text{-3} & \text{-2} & \text{0} \\\end{matrix} \right]$
$\text{X}-\text{B}=\text{A}$
$\text{X=A+B=}\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-4} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{3} & \text{-3} & \text{-2} & \text{0} \\\end{matrix} \right]$
$\text{= }\!\![\!\!\text{ }\begin{matrix} \text{-1+3} & \text{0-3} & \text{2-2} & \text{-4+0} \\\end{matrix}\text{ }\!\!]\!\!\text{ }$$\text{=}\left[ \begin{matrix} \text{2} & \text{-3} & \text{0} & \text{-4} \\\end{matrix} \right]$
Exercise-9 B
1. Evaluate:
(i) $3\left[ \begin{matrix} \mathbf{ 5} &\mathbf{ -2} \\\end{matrix} \right]$
Ans:
$\text{3}\left[ \begin{matrix} \text{5} & \text{-2} \\\end{matrix} \right]=\left[ \begin{matrix} \text{3 }\!\!\times\!\!\text{ 5} & \text{3 }\!\!\times\!\!\text{ (-2)} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{15} & \text{-6} \\\end{matrix} \right]$
(ii) $7\left[ \begin{matrix} \mathbf{ -1} & \mathbf{2} &\mathbf{ 0} &\mathbf{ 1} \\\end{matrix} \right]$
Ans:
$\text{7}\left[ \begin{matrix} \text{-1} & \text{2} & \text{0} & \text{1} \\\end{matrix} \right]=\left[ \text{7 }\!\!\times\!\!\text{ (}\begin{matrix} \text{-1)} & \text{7 }\!\!\times\!\!\text{ 2} & \text{7 }\!\!\times\!\!\text{ 0} & \text{7 }\!\!\times\!\!\text{ 1} \\\end{matrix} \right]\,\,$ $\text{=}\left[ \begin{matrix} \text{-7} & \text{14} & \text{0} & \text{7} \\\end{matrix} \right]$
(iii) $2\left[ \begin{matrix} \mathbf{ -1 }& \mathbf{0} &\mathbf{ 2 }& \mathbf{-3} \\\end{matrix} \right]+\left[ \begin{matrix} \mathbf{ 3} & \mathbf{3} & \mathbf{5} &\mathbf{ 0} \\\end{matrix} \right]$
Ans:
$\text{2}\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-3} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \text{3} & \text{3} & \text{5} & \text{0} \\\end{matrix} \right]$
$\text{=}\left[ \text{2 }\!\!\times\!\!\text{ (}\begin{matrix} \text{-1)} & \text{2 }\!\!\times\!\!\text{ 0} & \text{2 }\!\!\times\!\!\text{ 2} & \text{2 }\!\!\times\!\!\text{ (-3)} \\\end{matrix} \right]\,\text{+}\left[ \begin{matrix} \text{3} & \text{3} & \text{5} & \text{0} \\\end{matrix} \right]\,$
$\text{=}\left[ \begin{matrix} \text{-2+3} & \text{0+3} & \text{4+5} & \text{-6+0} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{1} & \text{3} & \text{9} & \text{-6} \\\end{matrix} \right]$
(iv) $6\left[ \begin{matrix} \mathbf{ 3} & \mathbf{ -2} \\\end{matrix} \right]-2\left[ \begin{matrix} \mathbf{ -8} & \mathbf{ 1 } \\\end{matrix} \right]$
Ans:
$\text{6}\left[ \begin{matrix} \text{3} & \text{-2} \\\end{matrix} \right]\text{-2}\left[ \begin{matrix} \text{-8} & \text{1} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{18} & \text{-12} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{-16} & \text{2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{18+16} & \text{-12-2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{34} & \text{-14} \\\end{matrix} \right]$
2. Find $x$ and $y$ if:
(i)$3\left[ \begin{matrix} \mathbf{4} & \mathbf{x} \\\end{matrix} \right]+2\left[ \begin{matrix} \mathbf{ y} & \mathbf{-3} \\\end{matrix} \right]=\left[ \begin{matrix} \mathbf{10} & \mathbf{0} \\\end{matrix} \right]$
Ans:
$3\left[ \begin{matrix} 4 & x \\\end{matrix} \right]+2\left[ \begin{matrix} y & -3 \\\end{matrix} \right]=\left[ \begin{matrix} 10 & 0 \\\end{matrix} \right]$ $\left[ \begin{matrix} 12 & 3x \\\end{matrix} \right]+\left[ 2\begin{matrix} y & -6 \\\end{matrix} \right]=\left[ \begin{matrix} 10 & 0 \\\end{matrix} \right]$
$\left[ \begin{matrix} 12+2y & 3x-6 \\\end{matrix} \right]=\left[ \begin{matrix} 10 & 0 \\\end{matrix} \right]$
Now by comparing the corresponding elements we have
$12+2y=10\Rightarrow 2y=10-12$
$2y=-2\Rightarrow y=-1$
$3x-6=0\Rightarrow x=2$
Therefore x = 2 and y = -1
(ii)$x\left[ \begin{matrix} \mathbf{ -1} &\mathbf{ 2} \\\end{matrix} \right]-4\left[ \begin{matrix} \mathbf{ -2} & \mathbf{ y} \\\end{matrix} \right]=\left[ \begin{matrix} \mathbf{ 7} & \mathbf{ -8} \\\end{matrix} \right]$
Ans:
$x\left[ \begin{matrix} -1 & 2 \\\end{matrix} \right]-4\left[ \begin{matrix} -2 & y \\\end{matrix} \right]=\left[ \begin{matrix} 7 & -8 \\\end{matrix} \right]$
$\left[ \begin{matrix} -x & 2x \\\end{matrix} \right]-\left[ \begin{matrix} -8 & 4y \\\end{matrix} \right]=\left[ \begin{matrix} 7 & -8 \\\end{matrix} \right]$
$\left[ \begin{matrix} -x+8 & 2x-4y \\\end{matrix} \right]=\left[ \begin{matrix} 7 & -8 \\\end{matrix} \right]$
Now by comparing we have
$-x+8=7\Rightarrow x=8-7$
$\therefore x=1$
$2x-4y=-8\Rightarrow 2-4y=-8$
$4y=10\Rightarrow y=\dfrac{10}{4}$
$\therefore y=\dfrac{5}{2}$
Therefore the value of $x=1$ and $y=\dfrac{5}{2}$.
3. Given $A=\left[ \begin{matrix} 2 & 1 & 3 & 0 \\\end{matrix} \right],\,B=\left[ \begin{matrix} 1 & 1 & 5 & 2 \\\end{matrix} \right]$ and $C=\left[ \begin{matrix} -3 & -1 & 0 & 0 \\\end{matrix} \right]$; find:
(i) $2\mathbf{A}-3\mathbf{B}+\mathbf{C}$.
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{2} & \text{1} & \text{3} & \text{0} \\\end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \text{1} & \text{1} & \text{5} & \text{2} \\\end{matrix} \right]\text{ and C=}\left[ \begin{matrix} \text{-3} & \text{-1} & \text{0} & \text{0} \\\end{matrix} \right]$
$2A-3B+C=2\left[ 2~1~3~0~ \right]-3\left[ 1~1~5~2~ \right]+\left[ -3~-1~0~0~ \right]$
$\text{2A-3B+C=2}\left[ \begin{matrix} \text{2} & \text{1} & \text{3} & \text{0} \\\end{matrix} \right]-\text{3}\left[ \begin{matrix} \text{1} & \text{1} & \text{5} & \text{2} \\\end{matrix} \right]\,+\left[ \begin{matrix} \text{-3} & \text{-1} & \text{0} & \text{0} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{4} & \text{2} & \text{6} & \text{0} \\\end{matrix} \right]-\left[ \begin{matrix} \text{3} & \text{3} & \text{15} & \text{6} \\\end{matrix} \right]+\left[ \begin{matrix} \text{-3} & \text{-1} & \text{0} & \text{0} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-2} & \text{-2} & \text{-9} & \text{-6} \\\end{matrix} \right]$
(ii) $\mathbf{A}+2\mathbf{C}-\mathbf{B}$
Ans:
Given
$\text{A=}\left[ \begin{matrix} \text{2} & \text{1} & \text{3} & \text{0} \\\end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \text{1} & \text{1} & \text{5} & \text{2} \\\end{matrix} \right]\text{ and C=}\left[ \begin{matrix} \text{-3} & \text{-1} & \text{0} & \text{0} \\\end{matrix} \right]$
$\text{A+2C-B=}\left[ \begin{matrix} \text{2} & \text{1} & \text{3} & \text{0} \\\end{matrix} \right]-\text{2}\left[ \begin{matrix} \text{-3} & \text{-1} & \text{0} & \text{0} \\\end{matrix} \right]-\left[ \begin{matrix} \text{1} & \text{1} & \text{5} & \text{2} \\\end{matrix} \right]\,$
$=\left[ \begin{matrix} \text{2} & \text{1} & \text{3} & \text{0} \\\end{matrix} \right]-\left[ \begin{matrix} \text{-6} & \text{-2} & \text{0} & \text{0} \\\end{matrix} \right]+\left[ \begin{matrix} \text{1} & \text{1} & \text{5} & \text{2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{2-6-1} & \text{1-2-1} & \text{3+0-5} & \text{0+0-2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-5} & \text{-2} & \text{-2} & \text{-2} \\\end{matrix} \right]$
4. If $\left[ \begin{matrix} 4 & -2 & 4 & 0 \\\end{matrix} \right]+3A=\left[ \begin{matrix} -2 & -2 & 1 & -3 \\\end{matrix} \right]$; find A.
Ans:
Given
$\left[ \begin{matrix} \text{4} & \text{-2} & \text{4} & \text{0} \\\end{matrix} \right]\text{+3A=}\left[ \begin{matrix} \text{-2} & \text{-2} & \text{1} & \text{-3} \\\end{matrix} \right]$ $\text{3A=}\left[ \begin{matrix} \text{-2} & \text{-2} & \text{1} & \text{-3} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{4} & \text{-2} & \text{4} & \text{0} \\\end{matrix} \right]$$\text{A=}\dfrac{\text{1}}{\text{3}}\left[ \begin{matrix} \text{-2+4} & \text{-2+2} & \text{1-4} & \text{-3-0} \\\end{matrix} \right]$
$\text{A=}\left[ \begin{matrix} \dfrac{\text{-6}}{\text{3}} & \text{0} & \dfrac{\text{-3}}{\text{3}} & \dfrac{\text{-3}}{\text{3}} \\\end{matrix} \right]$
$\text{A=}\left[ \begin{matrix} \text{-2} & \text{0} & \text{-1} & \text{-1} \\\end{matrix} \right]$
5. Given $A=\left[ \begin{matrix} 1 & 4 & 2 & 3 \\\end{matrix} \right]$ and $B=\left[ \begin{matrix} -4 & -1 & -3 & 2 \\\end{matrix} \right]$
Find the matrix 2A+B
Ans:
$\text{2A+B}\,\text{=}\,\text{2}\left[ \begin{matrix} \text{1} & \text{4} & \text{2} & \text{3} \\\end{matrix} \right]+\left[ \begin{matrix} \text{-4} & \text{-1} & \text{-3} & \text{2} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{2} & \text{8} & \text{4} & \text{6} \\\end{matrix} \right]+\left[ \begin{matrix} \text{-4} & \text{-1} & \text{-3} & \text{2} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{-2} & \text{7} & \text{1} & \text{4} \\\end{matrix} \right]$
6. Find a matrix C such that $C+B\,=\left[ \begin{matrix} 0 & 0 & 0 & 0 \\\end{matrix} \right]$
Ans:
$\text{C+B}\,\text{=}\left[ \begin{matrix} \text{0} & \text{0} & \text{0} & \text{0} \\\end{matrix} \right]$
$\text{C=-B=-}\left[ \begin{matrix} \text{-4} & \text{-1} & \text{-3} & \text{-2} \\\end{matrix} \right]$
$\text{C=}\left[ \begin{matrix} \text{4} & \text{1} & \text{3} & \text{2} \\\end{matrix} \right]$
7. If $2\left[ \begin{matrix} 3 & x & 0 & 1 \\\end{matrix} \right]+3\left[ \begin{matrix} 1 & 3 & y & 2 \\\end{matrix} \right]=\left[ \begin{matrix} z & -7 & 15 & 8 \\\end{matrix} \right]$; find values of $x,~y$ and z.
Ans:
Given
$\text{2}\left[ \begin{matrix} \text{3} & \text{x} & \text{0} & \text{1} \\\end{matrix} \right]\text{+3}\left[ \begin{matrix} \text{1} & \text{3} & \text{y} & \text{2} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{z} & \text{-7} & \text{15} & \text{8} \\\end{matrix} \right]$
$\left[ \text{6+}\begin{matrix} \text{3} & \text{2x+9} & \text{0+3y} & \text{2+6} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{z} & \text{-7} & \text{15} & \text{8} \\\end{matrix} \right]$
$\left[ \begin{matrix} \text{9} & \text{2x+9} & \text{3y} & \text{8} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{z} & \text{-7} & \text{15} & \text{8} \\\end{matrix} \right]$
By comparing we get
$9=z$
$2x+9=-7\Rightarrow 2x=-7-9$
x = -8
$3y=15\Rightarrow y=5$
Thus, values of x = -8, y = 5 and z = 9.
8. Given $A=\left[ \begin{matrix} -3 & 6 & 0 & -9 \\\end{matrix} \right]$ and ${{\mathbf{A}}^{\mathbf{t}}}$ is its transpose matrix. Find,
(i) $2\mathbf{A}+3{{\mathbf{A}}^{\mathbf{t}}}$
Ans:
$\text{A=}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]\Rightarrow {{\text{A}}^{\text{t}}}\text{=}\left[ \begin{matrix} \text{-3} & \text{0} & \text{6} & \text{-9} \\\end{matrix} \right]$
$\text{2A+3}{{\text{A}}^{\text{t}}}\text{=2}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]\text{+3}\left[ \begin{matrix} \text{-3} & \text{0} & \text{6} & \text{-9} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-6} & \text{12} & \text{0} & \text{-18} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \text{-9} & \text{0} & \text{18} & \text{-27} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-15} & \text{12} & \text{18} & \text{-45} \\\end{matrix} \right]$
(ii) $2{{A}^{t}}-3A$
Ans:
$\text{A=}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]\Rightarrow {{\text{A}}^{\text{t}}}\text{=}\left[ \begin{matrix} \text{-3} & \text{0} & \text{6} & \text{-9} \\\end{matrix} \right]$
$\text{2A-3A=2}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]\text{-3}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-6} & \text{12} & \text{0} & \text{-18} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \text{-9} & \text{18} & \text{0} & \text{-27} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-15} & \text{18} & \text{12} & \text{-45} \\\end{matrix} \right]$
(iii) $\dfrac{1}{2}A-\dfrac{1}{3}{{A}^{t}}$
Ans:
$\text{A=}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]\Rightarrow {{\text{A}}^{\text{t}}}\text{=}\left[ \begin{matrix} \text{-3} & \text{0} & \text{6} & \text{-9} \\\end{matrix} \right]$
$\dfrac{\text{1}}{\text{2}}\text{A-}\dfrac{\text{1}}{\text{3}}{{\text{A}}^{\text{t}}}\text{=}\dfrac{\text{1}}{\text{2}}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]\text{-}\dfrac{\text{1}}{\text{3}}\left[ \begin{matrix} \text{-3} & \text{0} & \text{6} & \text{-9} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \dfrac{\text{-3}}{\text{2}} & \text{3} & \text{0} & \dfrac{\text{-9}}{\text{2}} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{-1} & \text{0} & \text{2} & \text{-3} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \dfrac{\text{-3}}{\text{2}}\text{+1} & \text{3-0} & \text{0-2} & \dfrac{\text{-9}}{\text{2}}\text{+3} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \dfrac{\text{-1}}{\text{2}} & \text{3} & \text{-2} & \dfrac{\text{-3}}{\text{2}} \\\end{matrix} \right]$
(iv) ${{A}^{t}}-\dfrac{1}{3}A$
Ans:
$\text{A=}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]\Rightarrow {{\text{A}}^{\text{t}}}\text{=}\left[ \begin{matrix} \text{-3} & \text{0} & \text{6} & \text{-9} \\\end{matrix} \right]$
${{\text{A}}^{\text{t}}}\text{-}\dfrac{\text{1}}{\text{3}}\text{A=}\left[ \begin{matrix} \text{-3} & \text{0} & \text{6} & \text{-9} \\\end{matrix} \right]\text{-}\dfrac{\text{1}}{\text{3}}\left[ \begin{matrix} \text{-3} & \text{6} & \text{0} & \text{-9} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-3} & \text{0} & \text{6} & \text{-9} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{-1} & \text{2} & \text{0} & \text{-3} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-2} & \text{-2} & \text{6} & \text{-6} \\\end{matrix} \right]$
9. Given $A=\left[ \begin{matrix} 1 & 1 & -2 & 0 \\\end{matrix} \right]$ and $B=\left[ \begin{matrix} 2 & -1 & 1 & 1 \\\end{matrix} \right]$. Solve for matrix X:
(i) X+2A=B
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} & \text{0} \\\end{matrix} \right]\,\,and\,\text{B=}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1} & \text{1} \\\end{matrix} \right]$
$\text{X+2A=B}$
$X=B-\text{2}A=\left[ \begin{matrix} \text{2} & \text{-1} & \text{1} & \text{1} \\\end{matrix} \right]-\text{2}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} & \text{0} \\\end{matrix} \right]\,$
$X=\left[ \begin{matrix} \text{2-2} & \text{-1-2} & \text{1+4} & \text{1-0} \\\end{matrix} \right]$
$X=\left[ \begin{matrix} \text{0} & \text{-3} & \text{5} & \text{1} \\\end{matrix} \right]$
(ii) 3X+B+2A=0
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} & \text{0} \\\end{matrix} \right]\,\,and\,\text{B=}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1} & \text{1} \\\end{matrix} \right]$
$3\text{X}+\text{B}+2\text{A}=0$
$\text{3X=-B-2A=-}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1} & \text{1} \\\end{matrix} \right]\text{-2}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} & \text{0} \\\end{matrix} \right]$
$\text{X=}\dfrac{\text{1}}{\text{3}}\left[ \text{-}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1} & \text{1} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{2} & \text{2} & \text{-4} & \text{0} \\\end{matrix} \right] \right]$
$\text{X=}\dfrac{\text{1}}{\text{3}}\left[ \begin{matrix} \text{-2-2} & \text{1-2} & \text{-2+4} & \text{-1-0} \\\end{matrix} \right]$
$\text{X=}\left[ \begin{matrix} \text{-}\dfrac{\text{4}}{\text{3}} & \text{-}\dfrac{\text{1}}{\text{3}} & \text{1} & \text{-}\dfrac{\text{1}}{\text{3}} \\\end{matrix} \right]$
(iii) $3\mathbf{A}-2\mathbf{X}=\mathbf{X}-2\mathbf{B}$
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} & \text{0} \\\end{matrix} \right]\,\,and\,\text{B=}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1} & \text{1} \\\end{matrix} \right]$
$\text{3A-2X=X-2B}$
$\text{3A+2B=X+2X}$
$\text{3X=3A+2B}$
$\text{3X=3A=2B=3}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} & \text{0} \\\end{matrix} \right]\,+\text{2}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1} & \text{1} \\\end{matrix} \right]$
$\text{X=}\dfrac{\text{1}}{\text{3}}\left[ \begin{matrix} 3+4 & 3-2 & -6+2 & 0+2 \\\end{matrix} \right]$ $\text{X=}\left[ \begin{matrix} \dfrac{7}{3} & \dfrac{1}{3} & -\dfrac{4}{3} & \dfrac{2}{3} \\\end{matrix} \right]$
10. If $M=\left[ \begin{matrix} 0 & 1 \\\end{matrix} \right]$ and $N=\left[ \begin{matrix} 1 & 0 \\\end{matrix} \right]$, show that: $3M+5N=\left[ \begin{matrix} 5 & 3 \\\end{matrix} \right]$
Ans:
Given, $\text{M=}\left[ \begin{matrix} \text{0} & \text{1} \\\end{matrix} \right]$, $\text{N=}\left[ \begin{matrix} \text{1} & \text{0} \\\end{matrix} \right]$
We have to show that, $\text{3M+5N=}\left[ \begin{matrix} \text{5} & \text{3} \\\end{matrix} \right]$ $\text{LHS=3M+5N}$
$\text{=3}\left[ \begin{matrix} 0 & 1 \\\end{matrix} \right]+5\left[ \begin{matrix} 1 & 0 \\\end{matrix} \right]$
$=\left[ \begin{matrix} 0+5 & 3+0 \\\end{matrix} \right]$
$\text{LHS=}\left[ \begin{matrix} 5 & 3 \\\end{matrix} \right]\text{=RHS}$
Hence proved.
11. If I is the unit matrix of order $2\times 2$; find the matrix M, such that :
(i) $M-2I=3\left[ \begin{matrix} -1 & 0 & 4 & 1 \\\end{matrix} \right]$
Ans:
Given $\text{I=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right]$
$\text{M-2I=3}\left[ \begin{matrix} \text{-1} & \text{0} & \text{4} & \text{1} \\\end{matrix} \right]$
$\text{M=3}\left[ \begin{matrix} \text{-1} & \text{0} & \text{4} & \text{1} \\\end{matrix} \right]\text{+2}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-3+2} & \text{0+0} & \text{12+0} & \text{3+2} \\\end{matrix} \right]$
$\text{M=}\left[ \begin{matrix} \text{-1} & \text{0} & \text{12} & \text{5} \\\end{matrix} \right]$
(ii) $5M+3I=4\left[ \begin{matrix} 2 & -5 & 0 & -3 \\\end{matrix} \right]$
Ans:
Given $\text{I=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right]$
$\text{5M+3I=4}\left[ \begin{matrix} \text{2} & \text{-5} & \text{0} & \text{-3} \\\end{matrix} \right]$
$\text{5M=4}\left[ \begin{matrix} \text{2} & \text{-5} & \text{0} & \text{-3} \\\end{matrix} \right]-\text{3}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right]$
$\text{M=}\dfrac{\text{1}}{\text{5}}\left[ \begin{matrix} \text{8-3} & \text{-20-0} & \text{0-0} & \text{-12-3} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \dfrac{\text{5}}{\text{5}} & \text{-}\dfrac{\text{20}}{\text{5}} & \dfrac{\text{0}}{\text{5}} & \text{-}\dfrac{\text{15}}{\text{5}} \\\end{matrix} \right]$
$\text{M=}\left[ \begin{matrix} \text{1} & \text{-4} & \text{0} & \text{-3} \\\end{matrix} \right]$
(iii) If $\left[ \begin{matrix} 1 & 4 & -2 & 3 \\\end{matrix} \right]+2M=3\left[ \begin{matrix} 3 & 2 & 0 & -3 \\\end{matrix} \right]$, find the matrix M.
Ans:
Given
$\left[ \begin{matrix} \text{1} & \text{4} & \text{-2} & \text{3} \\\end{matrix} \right]\text{+2M=3}\left[ \begin{matrix} \text{3} & \text{2} & \text{0} & \text{-3} \\\end{matrix} \right]$
$\text{2M=3}\left[ \begin{matrix} \text{3} & \text{2} & \text{0} & \text{-3} \\\end{matrix} \right]-\left[ \begin{matrix} \text{1} & \text{4} & \text{-2} & \text{3} \\\end{matrix} \right]$
$\text{M=}\dfrac{\text{1}}{\text{2}}\left[ \begin{matrix} \text{9-1} & \text{6-4} & \text{0+2} & \text{-9-3} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \dfrac{\text{8}}{\text{2}} & \dfrac{\text{2}}{\text{2}} & \dfrac{\text{2}}{\text{2}} & \text{-}\dfrac{\text{12}}{\text{2}} \\\end{matrix} \right]$
$\text{M=}\left[ \begin{matrix} \text{4} & \text{1} & \text{1} & \text{-6} \\\end{matrix} \right]$
Exercise-9 C
1. Evaluate: if possible:
(i) $\left[ \begin{matrix} \mathbf{ 3} & \mathbf{2} \\\end{matrix} \right]\left[ \begin{matrix} \mathbf{ 2} &\mathbf{ 0} \\\end{matrix} \right]$
Ans:
$\left[ \begin{matrix} \text{3} & \text{2} \\\end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{0} \\\end{matrix} \right]$$=\left[ 3\times 2+2\times 0 \right]$
$=\left[ 6 \right]$
(ii) $\left[ \begin{matrix} \mathbf{ 1} &\mathbf{ -2} \\\end{matrix} \right]\left[ \begin{matrix} \mathbf{-2} &\mathbf{ 3} &\mathbf{ -1} & \mathbf{4} \\\end{matrix} \right]$
Ans:
$\left[ \begin{matrix} \text{1} & \text{-2} \\\end{matrix} \right]\left[ \begin{matrix} \text{-2} & \text{3} & \text{-1} & \text{4} \\\end{matrix} \right]=\left[ \text{1 }\!\!\times\!\!\text{ (-2)+(-2) }\!\!\times\!\!\text{ (-1) }\!\!\times\!\!\text{ 3+(-2) }\!\!\times\!\!\text{ 4} \right]$
$\text{=}\left[ \begin{matrix} \text{0} & \text{-5} \\\end{matrix} \right]$
(iii) $\left[ \begin{matrix} \mathbf{6} & \mathbf{4} & \mathbf{3} & \mathbf{-1} \\\end{matrix} \right]\left[ \begin{matrix} \mathbf{ -1} &\mathbf{ 3} \\\end{matrix} \right]$
Ans:
$\left[ \begin{matrix} \text{6} & \text{4} & \text{3} & \text{-1} \\\end{matrix} \right]\left[ \begin{matrix} \text{-1} & \text{3} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{6 }\!\!\times\!\!\text{ (-1)+4 }\!\!\times\!\!\text{ 3} & \text{3 }\!\!\times\!\!\text{ (-1)+(-1) }\!\!\times\!\!\text{ 3} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{6} & \text{-6} \\\end{matrix} \right]$
(iv) $\left[ \begin{matrix} \mathbf{6} &\mathbf{ 4 }&\mathbf{ 3} &\mathbf{ -1} \\\end{matrix} \right]\left[ \begin{matrix} \mathbf{ -1 }&\mathbf{ 3} \\\end{matrix} \right]$
Ans:
$\left[ \begin{matrix} \text{6} & \text{4} & \text{3} & \text{-1} \\\end{matrix} \right]\left[ \begin{matrix} \text{-1} & \text{3} \\\end{matrix} \right]$
Order of the first matrix is $2\times 2$ and the order of the second matrix is $1\times 2$.
The number of columns in the first matrix is not equal to the number of rows in the second matrix. Thus, the product is not possible.
2. If $A=\left[ \begin{matrix} \mathbf{ 0} & \mathbf{2} &\mathbf{ 5 }&\mathbf{ -2} \\\end{matrix} \right],\,B=\left[ \begin{matrix} \mathbf{ 1} &\mathbf{ -1} &\mathbf{ 3} &\mathbf{ 2} \\\end{matrix} \right]$ and I is a unit matrix of order $2\times 2$, find:
(i) AB
Ans:
$\text{AB=}\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{-1} & \text{3} & \text{2} \\\end{matrix} \right]$
$\text{AB=}\left[ \begin{matrix} \text{0 }\!\!\times\!\!\text{ 1+2 }\!\!\times\!\!\text{ 3} & \text{0 }\!\!\times\!\!\text{ (-1)+2 }\!\!\times\!\!\text{ 2} & \text{5 }\!\!\times\!\!\text{ 1+(-2) }\!\!\times\!\!\text{ 3} & \text{5 }\!\!\times\!\!\text{ (-1)+(-2) }\!\!\times\!\!\text{ 2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{6} & \text{4} & \text{-1} & \text{-9} \\\end{matrix} \right]$
(ii) BA
Ans:
$\text{BA=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{3} & \text{2} \\\end{matrix} \right]\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{1 }\!\!\times\!\!\text{ 0+(-1) }\!\!\times\!\!\text{ 5} & \text{1 }\!\!\times\!\!\text{ 2+(-1) }\!\!\times\!\!\text{ (-2)} & \text{3 }\!\!\times\!\!\text{ 0+2 }\!\!\times\!\!\text{ 5} & \text{3 }\!\!\times\!\!\text{ 2+2 }\!\!\times\!\!\text{ (-2)} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-5} & \text{4} & \text{10} & \text{2} \\\end{matrix} \right]$
(iii) AI
Ans:
$\text{A=}\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right],\,I=\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right]$
$\text{AI=}\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right]$
$\text{AI=}\left[ \begin{matrix} \text{0 }\!\!\times\!\!\text{ 1+2 }\!\!\times\!\!\text{ 0} & \text{0 }\!\!\times\!\!\text{ 0+2 }\!\!\times\!\!\text{ 1} & \text{5 }\!\!\times\!\!\text{ 1+(-2) }\!\!\times\!\!\text{ 0} & \text{5 }\!\!\times\!\!\text{ 0+(-2) }\!\!\times\!\!\text{ 1} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]$
(iv) IB
Ans:
$\text{B=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{3} & \text{2} \\\end{matrix} \right]\text{,}\,\text{I=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right]$
$\text{IB=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{-1} & \text{3} & \text{2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{1 }\!\!\times\!\!\text{ 1+0 }\!\!\times\!\!\text{ 3} & \text{1 }\!\!\times\!\!\text{ (-1)+0 }\!\!\times\!\!\text{ 2} & \text{0 }\!\!\times\!\!\text{ 1+1 }\!\!\times\!\!\text{ 3} & \text{0 }\!\!\times\!\!\text{ (-1)+1 }\!\!\times\!\!\text{ 2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{3} & \text{2} \\\end{matrix} \right]$
(v) ${{\mathbf{A}}^{2}}$
Ans:
$A=\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]$${{A}^{2}}=\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{0 }\!\!\times\!\!\text{ 0+2 }\!\!\times\!\!\text{ 5} & \text{0 }\!\!\times\!\!\text{ 2+2 }\!\!\times\!\!\text{ (-2)} & \text{5 }\!\!\times\!\!\text{ 0+(-2) }\!\!\times\!\!\text{ 5} & \text{5 }\!\!\times\!\!\text{ 2+(-2) }\!\!\times\!\!\text{ (-2)} \\\end{matrix} \right]$$\text{=}\left[ \begin{matrix} \text{10} & \text{-4} & \text{-10} & \text{14} \\\end{matrix} \right]$
(vi) ${{\mathbf{B}}^{2}}\mathbf{A}$
Ans:
$\text{B=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{3} & \text{2} \\\end{matrix} \right],\,A=\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]$ ${{B}^{2}}A=\left( \left[ \begin{matrix} \text{1} & \text{-1} & \text{3} & \text{2} \\\end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{-1} & \text{3} & \text{2} \\\end{matrix} \right] \right)\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{1 }\!\!\times\!\!\text{ 1+(-1) }\!\!\times\!\!\text{ 3} & \text{1 }\!\!\times\!\!\text{ (-1)+(-1) }\!\!\times\!\!\text{ 2} & \text{3 }\!\!\times\!\!\text{ 1+2 }\!\!\times\!\!\text{ 3} & \text{3 }\!\!\times\!\!\text{ (-1)+2 }\!\!\times\!\!\text{ 2} \\\end{matrix} \right]\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-2} & \text{-3} & \text{9} & \text{1} \\\end{matrix} \right]\left[ \begin{matrix} \text{0} & \text{2} & \text{5} & \text{-2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-2 }\!\!\times\!\!\text{ 0+(-3) }\!\!\times\!\!\text{ 5} & \text{-2 }\!\!\times\!\!\text{ 2+(-3) }\!\!\times\!\!\text{ (2)} & \text{9 }\!\!\times\!\!\text{ 0+1 }\!\!\times\!\!\text{ 5} & \text{9 }\!\!\times\!\!\text{ 2+1 }\!\!\times\!\!\text{ (-2)} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{-15} & \text{2} & \text{5} & \text{16} \\\end{matrix} \right]$
3. If $A=\left[ \begin{matrix} \mathbf{ 3} & \mathbf{x }&\mathbf{ 0} &\mathbf{ 1} \\\end{matrix} \right]$ and $B=\left[ \begin{matrix} \mathbf{9} &\mathbf{ 16} & \mathbf{0} &\mathbf{ -y} \\\end{matrix} \right]$, find x and y when ${{A}^{2}}=B$.
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{3} & \text{x} & \text{0} & \text{1} \\\end{matrix} \right]$ and $B=\left[ \begin{matrix} \text{9} & \text{16} & \text{0} & \text{-y} \\\end{matrix} \right]$
${{\text{A}}^{2}}=\text{B}$
$\left[ \begin{matrix} \text{3} & \text{x} & \text{0} & \text{1} \\\end{matrix} \right]\left[ \begin{matrix} \text{3} & \text{x} & \text{0} & \text{1} \\\end{matrix} \right]=\left[ \begin{matrix} \text{9} & \text{16} & \text{0} & -y \\\end{matrix} \right]$
$\left[ \begin{matrix} \text{9+0} & \text{3x+x} & \text{0+0} & \text{0+1} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{9} & \text{16} & \text{0} & \text{-y} \\\end{matrix} \right]$
By comparing we have
$4x=16\Rightarrow x=4$
$-y=1\Rightarrow y=-1$
Therefore the value of $x=4$ and $\text{y}=-1$.
4. Find x and y if:
(i) $\left[ \begin{matrix} \mathbf{ 4} &\mathbf{ 3x} & \mathbf{x }& \mathbf{-2} \\\end{matrix} \right]\left[ \begin{matrix} \mathbf{ 5} &\mathbf{ 1} \\\end{matrix} \right]\,=\left[ \begin{matrix} \mathbf{y} &\mathbf{ 8} \\\end{matrix} \right]\,\,$
Ans:
$\left[ \begin{matrix} \text{4} & \text{3x} & \text{x} & \text{-2} \\\end{matrix} \right]\left[ \begin{matrix} \text{5} & \text{1} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{y} & \text{8} \\\end{matrix} \right]$
$\left[ \begin{matrix} \text{20+3x} & \text{5x-2} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{y} & \text{8} \\\end{matrix} \right]$
By comparing we have
$20+3x=y$ and $5x-2=8\Rightarrow 5x=10$
$\therefore x=2$
$y=20+6=26$
Thus value of $x=2$ and $y=26$
(ii) $\left[ \begin{matrix} \mathbf{x} & \mathbf{0 }& \mathbf{-3} & \mathbf{1} \\\end{matrix} \right]\left[ \begin{matrix} \mathbf{ 1} &\mathbf{ 1} & \mathbf{0} & \mathbf{y} \\\end{matrix} \right]=\left[ \begin{matrix} \mathbf{ 2} &\mathbf{ 2} &\mathbf{ -3} & \mathbf{-2} \\\end{matrix} \right]$
Ans:
$\left[ \begin{matrix} \text{x} & \text{0} & \text{-3} & \text{1} \\\end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{1} & \text{0} & \text{y} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{2} & \text{2} & \text{-3} & \text{-2} \\\end{matrix} \right]$
$\left[ \begin{matrix} \text{x} & \text{x} & \text{-3} & \text{y-3} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{2} & \text{2} & \text{-3} & \text{-2} \\\end{matrix} \right]$
By comparing we have,
x=2 and y-3=-2
y=1
Thus, value of x=2 and y=1.
5. If $A=\left[ \begin{matrix} \mathbf{ 1} & \mathbf{3} & \mathbf{2} & \mathbf{4} \\\end{matrix} \right],\,B=\left[ \begin{matrix} \mathbf{ 1} &\mathbf{ 2} & \mathbf{4} & \mathbf{3 } \\\end{matrix} \right]$ and $C=\left[ \begin{matrix} \mathbf{ 4} &\mathbf{ 3} &\mathbf{ 1 }& \mathbf{2} \\\end{matrix} \right]$, find:
(i) $\left( \mathbf{AB} \right)\mathbf{C}$
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{3} & \text{2} & \text{4} \\\end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \text{1} & \text{2} & \text{4} & \text{3} \\\end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \text{4} & \text{3} & \text{1} & \text{2} \\\end{matrix} \right]$
$(AB)C=\left( \left[ \begin{matrix} \text{1} & \text{3} & \text{2} & \text{4} \\\end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{2} & \text{4} & \text{3} \\\end{matrix} \right] \right)\left[ \begin{matrix} \text{4} & \text{3} & \text{1} & \text{2} \\\end{matrix} \right]$
$\text{=}\left( \left[ \begin{matrix} \text{13} & \text{11} & \text{18} & \text{16} \\\end{matrix} \right] \right)\left[ \begin{matrix} \text{4} & \text{3} & \text{1} & \text{2} \\\end{matrix} \right]$
$=\left[ \begin{matrix} \text{63} & \text{61} & \text{88} & \text{86} \\\end{matrix} \right]$
(ii) A(BC)
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{3} & \text{2} & \text{4} \\\end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \text{1} & \text{2} & \text{4} & \text{3} \\\end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \text{4} & \text{3} & \text{1} & \text{2} \\\end{matrix} \right]$
$A(BC)=\left[ \begin{matrix} \text{1} & \text{3} & \text{2} & \text{4} \\\end{matrix} \right]\left( \left[ \begin{matrix} \text{1} & \text{2} & \text{4} & \text{3} \\\end{matrix} \right]\left[ \begin{matrix} \text{4} & \text{3} & \text{1} & \text{2} \\\end{matrix} \right] \right)$
$\text{=}\left[ \begin{matrix} \text{1} & \text{3} & \text{2} & \text{4} \\\end{matrix} \right]\left( \left[ \begin{matrix} \text{6} & \text{7} & \text{19} & \text{18} \\\end{matrix} \right] \right)$
$\text{=}\left[ \begin{matrix} \text{63} & \text{61} & \text{88} & \text{86} \\\end{matrix} \right]$
yes, (AB)C=A(BC).
6. Given $A=\left[ \begin{matrix} \mathbf{0} & \mathbf{4 }& \mathbf{6} &\mathbf{ 3} &\mathbf{ 0} &\mathbf{ -1} \\\end{matrix} \right]$ and $B=\left[ \begin{matrix} \mathbf{0} &\mathbf{ 1} & \mathbf{-1} & \mathbf{2} & \mathbf{-5} & \mathbf{-6} \\ \end{matrix} \right]$, is the following possible:
(i) $\mathbf{AB}$
Ans:
Given, $\left[ \begin{matrix} \text{0} & \text{4} & \text{6} & \text{3} & \text{0} & \text{-1} \\ \end{matrix} \right]$ and $\left[ \begin{matrix} \text{0} & \text{1} & \text{-1} & \text{2} & \text{-5} & \text{-6} \\\end{matrix} \right]$
$\text{AB=}\left[ \begin{matrix} \text{0} & \text{4} & \text{6} & \text{3} & \text{0} & \text{-1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{0} & \text{1} & \text{-1} & \text{2} & \text{-5} & \text{-6} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{0-4-30} & \text{0+8-36} & \text{0+0+5} & \text{3+0+6} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-34} & \text{28} & \text{5} & \text{9} \\\end{matrix} \right]$
(ii) BA
Ans:
Given, $\left[ \begin{matrix} \text{0} & \text{4} & \text{6} & \text{3} & \text{0} & \text{-1} \\ \end{matrix} \right]$ and $\left[ \begin{matrix} \text{0} & \text{1} & \text{-1} & \text{2} & \text{-5} & \text{-6} \\ \end{matrix} \right]$
$\text{BA=}\left[ \begin{matrix} \text{0} & \text{1} & \text{-1} & \text{2} & \text{-5} & \text{-6} \\ \end{matrix} \right]\left[ \begin{matrix} \text{0} & \text{4} & \text{6} & \text{3} & \text{0} & \text{-1} \\ \end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{0+3} & \text{0+0} & \text{0-1} & \text{0+6} & \text{-4+0} & \text{-6-2} & \text{0-18} & \text{-20+0} & \text{-30+6} \\ \end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{3} & \text{0} & \text{-1} & \text{6} & \text{-4} & \text{-8} & \text{-18} & \text{-20} & \text{-24} \\\end{matrix} \right]$
(iii) A2
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{0} & \text{4} & \text{6} & \text{3} & \text{0} & \text{-1} \\ \end{matrix} \right]$
A2 = $\left[ \begin{matrix} \text{0} & \text{4} & \text{6} & \text{3} & \text{0} & \text{-1} \\ \end{matrix} \right]$$\left[ \begin{matrix} \text{0} & \text{4} & \text{6} & \text{3} & \text{0} & \text{-1} \\ \end{matrix} \right]$
The number of columns of matrix A is not equal to its number of rows. Therefore, product A2 is not possible.
7. Let $A=\left[ \begin{matrix} \mathbf{2} & \mathbf{1} & \mathbf{0} & \mathbf{-2} \\\end{matrix} \right],\,B=\left[ \begin{matrix} \mathbf{4} & \mathbf{1} &\mathbf{ -3} & \mathbf{-2} \\ \end{matrix} \right]$ and $C=\left[ \begin{matrix} \mathbf{-3} & \mathbf{2} & \mathbf{-1} & \mathbf{4} \\ \end{matrix} \right]$. Find ${{\text{A}}^{\text{2}}}\text{+AC-5B}$.
Solutions:
Given $\text{A=}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{-2} \\\end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \text{4} & \text{1} & \text{-3} & \text{-2} \\\end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \text{-3} & \text{2} & \text{-1} & \text{4} \\ \end{matrix} \right]$
${{\text{A}}^{\text{2}}}\text{+AC-5B=}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{-2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{-2} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{-2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{-3} & \text{2} & \text{-1} & \text{4} \\ \end{matrix} \right]\text{-5}\left[ \begin{matrix} \text{4} & \text{1} & \text{-3} & \text{-2} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{4} & \text{0} & \text{0} & \text{4} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{-7} & \text{8} & \text{2} & \text{-8} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{20} & \text{5} & \text{-15} & \text{-10} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{4-7-20} & \text{0+8-5} & \text{0+2+15} & \text{4-8+10} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix}\text{-23} & \text{3} & \text{17} & \text{6} \\\end{matrix} \right]$
8. If $M=\left[ \begin{matrix} \mathbf{1} & \mathbf{2} &\mathbf{ 2} &\mathbf{ 1} \\\end{matrix} \right]$ and I is a unit matrix of the same order as that of M; show that:
(i) ${{M}^{2}}=2M+3I$
Ans:
Given, $\text{M=}\left[ \begin{matrix} \text{1} & \text{2} & \text{2} & \text{1} \\\end{matrix} \right]$
${{\text{M}}^{2}}=2\text{M}+3\text{I}$
$\text{LHS}={{\text{M}}^{2}}$
$\text{=}\left[ \begin{matrix} \text{1} & \text{2} & \text{2} & \text{1} \\\end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{2} & \text{2} & \text{1} \\\end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{5} & \text{4} & \text{4} & \text{5} \\\end{matrix} \right]$
$\text{RHS}=2\text{M}+3\text{I}$
$\begin{align} & \text{=2}\left[ \begin{matrix} \text{1} & \text{2} & \text{2} & \text{1} \\ \end{matrix} \right]\text{+3}\left[ \begin{matrix}\text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{2+3} & \text{4+0} & \text{4+0} & \text{2+3} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \text{5} & \text{4} & \text{4} & \text{5} \\\end{matrix} \right] \\ \end{align}$ = LHS
Hence proved.
9. If $A=\left[ \begin{matrix} \mathbf{a} & \mathbf{0} & \mathbf{0} & \mathbf{2} \\ \end{matrix} \right],\,B=\left[ \begin{matrix} \mathbf{0} & \mathbf{-b} & \mathbf{1} &\mathbf{ 0} \\ \end{matrix} \right],\,M=\left[ \begin{matrix}\mathbf{ 1} & \mathbf{-1} & \mathbf{1 }& \mathbf{1} \\ \end{matrix} \right]$ and $\mathbf{BA}={{\mathbf{M}}^{2}}$, find the values of a and b.
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{a} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \text{0} & \text{-b} & \text{1} & \text{0} \\ \end{matrix} \right]\text{,}\,\text{M=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{1} & \text{1} \\ \end{matrix} \right]$
Also $\text{BA}={{\text{M}}^{2}}$
$\begin{align} & \left[ \begin{matrix} \text{0} & \text{-b} & \text{1} & \text{0} \\ \end{matrix} \right]\left[ \begin{matrix} \text{a} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]\,\text{=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{1} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{-1} & \text{1} & \text{1} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{0} & \text{-2b} & \text{a} & \text{0} \\ \end{matrix} \right]=\left[ \begin{matrix} \text{0} & \text{-2} & \text{2} & \text{0} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$-2b=-2\therefore b=1$
a = 2
Hence the value of a = 2 and b = 1.
10. Given $A=\left[ \begin{matrix}\mathbf{ 4} &\mathbf{ 1} & \mathbf{2 }& \mathbf{3 } \\\end{matrix} \right]$ and $B=\left[ \begin{matrix} \mathbf{1} &\mathbf{ 0} &\mathbf{ -2} & \mathbf{1} \\ \end{matrix} \right]$, find:
(i) $\mathbf{A}-\mathbf{B}$
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{4} & \text{1} & \text{2} & \text{3} \\ \end{matrix} \right]\,\,and\,\text{B=}\left[ \begin{matrix} \text{1} & \text{0} & \text{-2} & \text{1} \\ \end{matrix} \right]$
$\begin{align} & \text{A-B=}\left[ \begin{matrix} \text{4} & \text{1} & \text{2} & \text{3} \\ \end{matrix} \right]\,-\left[ \begin{matrix} \text{1} & \text{0} & \text{-2} & \text{1} \\ \end{matrix} \right]\, \\ & =\left[ \begin{matrix} \text{3} & \text{1} & \text{4} & \text{2} \\\end{matrix} \right] \\ \end{align}$
(ii) ${{\mathbf{A}}^{2}}$
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{4} & \text{1} & \text{2} & \text{3} \\\end{matrix} \right]$
$\begin{align} & {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{4} & \text{1} & \text{2} & \text{3} \\\end{matrix} \right]\left[ \begin{matrix} \text{4} & \text{1} & \text{2} & \text{3} \\\end{matrix} \right]\,\, \\ & \text{=}\left[ \begin{matrix} \text{18} & \text{7} & \text{14} & \text{11} \\\end{matrix} \right] \\ \end{align}$
(iii) $\mathbf{AB}$
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{4} & \text{1} & \text{2} & \text{3} \\ \end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \text{1} & \text{0} & \text{-2} & \text{1} \\\end{matrix} \right]$
$\begin{align} & \text{AB=}\left[ \begin{matrix} \text{4} & \text{1} & \text{2} & \text{3} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{0} & \text{-2} & \text{1} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{2} & \text{1} & \text{-4} & \text{3} \\ \end{matrix} \right] \\ \end{align}$
(iv) ${{\mathbf{A}}^{2}}-\mathbf{AB}+2\mathbf{B}$
Ans:
$\text{A=}\left[ \begin{matrix} \text{4} & \text{1} & \text{2} & \text{3} \\ \end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \text{1} & \text{0} & \text{-2} & \text{1} \\ \end{matrix} \right]$
${{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{18} & \text{7} & \text{14} & \text{11} \\ \end{matrix} \right]$, $\text{AB=}\left[ \begin{matrix} \text{2} & \text{1} & \text{-4} & \text{3} \\ \end{matrix} \right]$ and $\text{2B=}\left[ \begin{matrix} \text{2} & \text{0} & \text{-4} & \text{2} \\\end{matrix} \right]$
${{\text{A}}^{\text{2}}}\text{-AB+2B=}\left[ \begin{matrix} \text{18} & \text{7} & \text{14} & \text{11} \\ \end{matrix} \right]-\left[ \begin{matrix} \text{2} & \text{1} & \text{-4} & \text{3} \\ \end{matrix} \right]+\left[ \begin{matrix} \text{2} & \text{0} & \text{-4} & \text{2} \\\end{matrix} \right]$ $\text{=}\left[ \begin{matrix} \text{18} & \text{6} & \text{14} & \text{10} \\ \end{matrix} \right]$
11. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{1}} & \mathbf{\text{4}} & \mathbf{\text{1}} & \mathbf{\text{-3}} \\ \end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \mathbf{\text{1}} & \mathbf{\text{2}} &\mathbf{ \text{-1}} &\mathbf{ \text{-1}} \\ \end{matrix} \right]$, find:
(i) ${{\left( A+B \right)}^{2}}$
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{4} & \text{1} & \text{-3} \\ \end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \text{1} & \text{2} & \text{-1} & \text{-1} \\ \end{matrix} \right]$
Now, $\text{A+B=}\left[ \begin{matrix} \text{1} & \text{4} & \text{1} & \text{-3} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{1} & \text{2} & \text{-1} & \text{-1} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{2} & \text{6} & \text{0} & \text{-4} \\ \end{matrix} \right]$
${{\text{(A+B)}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{2} & \text{6} & \text{0} & \text{-4} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{6} & \text{0} & \text{-4} \\ \end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{4} & \text{-12} & \text{0} & \text{16} \\\end{matrix} \right]$
(ii) A2+B2
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{4} & \text{1} & \text{-3} \\ \end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \text{1} & \text{2} & \text{-1} & \text{-1} \\ \end{matrix} \right]$
$\begin{align} & \text{Now,}\,{{\text{A}}^{\text{2}}}\text{+}{{\text{B}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{1} & \text{4} & \text{1} & \text{-3} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{4} & \text{1} & \text{-3} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{1} & \text{2} & \text{-1} & \text{-1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{2} & \text{-1} & \text{-1} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{5} & \text{-8} & \text{-2} & \text{13} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{-1} & \text{0} & \text{0} & \text{-1} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \text{4} & \text{-8} & \text{-2} & \text{12} \\ \end{matrix} \right] \\ \end{align}$
(iii) Is ${{\text{(A+B)}}^{\text{2}}}\text{=}{{\text{A}}^{\text{2}}}\text{+}{{\text{B}}^{\text{2}}}\text{?}$
Ans:
From (i) and (ii) it is clear that ${{\text{(A+B)}}^{\text{2}}}\ne {{\text{A}}^{\text{2}}}\text{+}{{\text{B}}^{\text{2}}}$.
12. Find the matrix A, if $B=\left[ 2~1~0~1~ \right]$ and ${{\text{B}}^{\text{2}}}\text{=B+}\dfrac{\text{1}}{\text{2}}\text{A}$.
Ans:
Given, $\text{B=}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{1} \\ \end{matrix} \right]$ and ${{\text{B}}^{\text{2}}}\text{=B+}\dfrac{\text{1}}{\text{2}}\text{A}$
A[2(B2-B)
$\begin{align} & \text{=2}\left( \left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{1} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{1} \\ \end{matrix} \right] \right) \\ & \text{=2}\left( \left[ \begin{matrix} \text{4} & \text{3} & \text{0} & \text{1} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{1} \\ \end{matrix} \right] \right) \\ & \text{=2}\left[ \begin{matrix} \text{2} & \text{2} & \text{0} & \text{0} \\ \end{matrix} \right] \\ & \therefore \text{A=}\left[ \begin{matrix} \text{4} & \text{4} & \text{0} & \text{0} \\ \end{matrix} \right] \\ \end{align}$
13. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{-1}} & \mathbf{\text{1} }& \mathbf{\text{a}} & \mathbf{\text{b} } \\ \end{matrix} \right]$ and ${{\text{A}}^{\text{2}}}\text{=I}$, find a and b.
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{-1} & \text{1} & \text{a} & \text{b} \\ \end{matrix} \right]$ and ${{\text{A}}^{\text{2}}}\text{=I}$
$\begin{align} & {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{-1} & \text{1} & \text{a} & \text{b} \\ \end{matrix} \right]\left[ \begin{matrix} \text{-1} & \text{1} & \text{a} & \text{b} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{1+a} & \text{b-1} & \text{-a+ab} & \text{a+}{{\text{b}}^{\text{2}}} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{1+a} & \text{b-1} & \text{-a+ab} & a+{{b}^{\text{2}}} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$\begin{align} & \text{1+a=1}\,\therefore \,\text{a=0} \\ & \text{b-1=0}\,\therefore \,\text{b=1} \\ \end{align}$
Thus the value of a=0 and b=1.
14. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{2}} & \mathbf{\text{1}} & \mathbf{\text{0}} & \mathbf{\text{0}} \\ \end{matrix} \right]\text{,B=}\left[ \begin{matrix} \mathbf{\text{2}} & \mathbf{\text{3}} & \mathbf{\text{4}} &\mathbf{ \text{1}} \\ \end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \mathbf{\text{1} }& \mathbf{\text{4}} & \mathbf{\text{0}} & \mathbf{\text{2}} \\\end{matrix} \right]$; then show that:
(i) A(B+C)=AB+AC
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{0} \\ \end{matrix} \right]\text{,B=}\left[ \begin{matrix} \text{2} & \text{3} & \text{4} & \text{1} \\ \end{matrix} \right]\,\,\text{and}\,\text{C=}\left[ \begin{matrix} \text{1} & \text{4} & \text{0} & \text{2} \\ \end{matrix} \right]$
LHS = A(B+C)
$\begin{align} & \text{=}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{0} \\ \end{matrix} \right]\left( \left[ \begin{matrix} \text{2} & \text{3} & \text{4} & \text{1} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{1} & \text{4} & \text{0} & \text{2} \\ \end{matrix} \right] \right) \\ & \text{=}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{0} \\ \end{matrix} \right]\left( \left[ \begin{matrix} \text{3} & \text{7} & \text{4} & \text{3} \\ \end{matrix} \right] \right) \\ & \text{=}\left[ \begin{matrix} \text{10} & \text{17} & \text{0} & \text{0} \\ \end{matrix} \right] \\ \end{align}$
RHS = AB + AC
$\begin{align} & =\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{0} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{3} & \text{4} & \text{1} \\ \end{matrix} \right]+\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{0} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{4} & \text{0} & \text{2} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{8} & \text{7} & \text{0} & \text{0} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{2} & \text{10} & \text{0} & \text{0} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{10} & \text{17} & \text{0} & \text{0} \\ \end{matrix} \right] \\ & =LHS \\ \end{align}$
Hence Proved.
(ii) (B-A)C=BC-AC
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{0} \\ \end{matrix} \right]\text{,B=}\left[ \begin{matrix} \text{2} & \text{3} & \text{4} & \text{1} \\ \end{matrix} \right]\,\,\text{and}\,\text{C=}\left[ \begin{matrix} \text{1} & \text{4} & \text{0} & \text{2} \\ \end{matrix} \right]$
LHS = (B-A)C
$=\left( \left[ \begin{matrix} \text{2} & \text{3} & \text{4} & \text{1} \\ \end{matrix} \right]-\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{0} \\ \end{matrix} \right] \right)\left[ \begin{matrix} \text{1} & \text{4} & \text{0} & \text{2} \\ \end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{0} & \text{2} & \text{4} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{4} & \text{0} & \text{2} \\ \end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{0} & \text{4} & \text{4} & \text{18} \\ \end{matrix} \right]$
RHS = BC - AC
$\begin{align} & =\left[ \begin{matrix}\text{2} & \text{3} & \text{4} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{4} & \text{0} & \text{2} \\ \end{matrix} \right]-\left[ \begin{matrix} \text{2} & \text{1} & \text{0} & \text{0} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{4} & \text{0} & \text{2} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{2} & \text{14} & \text{4} & \text{18} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{10} & \text{0} & \text{0} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{0} & \text{4} & \text{4} & \text{18} \\ \end{matrix} \right] \\ & =LHS \\ \end{align}$
Hence Proved.
15. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{1}} & \mathbf{\text{4} }& \mathbf{\text{2}} & \mathbf{\text{1}} \\ \end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \mathbf{\text{-3}} & \mathbf{\text{2}} & \mathbf{\text{4}} & \mathbf{\text{0}} \\ \end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \mathbf{\text{1}} & \mathbf{\text{0}} & \mathbf{\text{0}} & \mathbf{\text{2}} \\ \end{matrix} \right]$, simplify: A2+BC
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{4} & \text{2} & \text{1} \\ \end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \text{-3} & \text{2} & \text{4} & \text{0} \\ \end{matrix} \right]\,\,\text{and}\,\text{C=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]$
${{\text{A}}^{\text{2}}}\text{+BC=}\left[ \begin{matrix} \text{1} & \text{4} & \text{2} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{4} & \text{2} & \text{1} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{-3} & \text{2} & \text{4} & \text{0} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]$
$\begin{align} & \text{=}\left[ \begin{matrix} \text{9} & \text{8} & \text{4} & \text{9} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{-3} & \text{4} & \text{4} & \text{0} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{6} & \text{12} & \text{8} & \text{9} \\ \end{matrix} \right] \\ \end{align}$
16. Solve for x and y:
(i) $\left[ \begin{matrix} \mathbf{\text{2} }& \mathbf{\text{5}} & \mathbf{\text{5}} & \mathbf{\text{2}} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{\text{x}} & \mathbf{\text{y}} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \mathbf{\text{-7}} &\mathbf{ \text{14}} \\ \end{matrix} \right]$
Ans:
Given
$\begin{align} & \left[ \begin{matrix} \text{2} & \text{5} & \text{5} & \text{2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{x} & \text{y} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{-7} & \text{14} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{2x+5y} & \text{5x+2y} \\ \end{matrix} \right]\text{=}\,\left[ \begin{matrix} \text{-7} & \text{14} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$2\text{x}+5\text{y}=-7$ …(1)
$5\text{x}+2\text{y}=14$ …(2)
By adding (1) and (2) we have
x+y=1 …(3)
By subtracting (1) from (2) we have
x-y=7 …(4)
By solving (3) and (4) we have
x=4, y=-3
(ii) $\left[ \begin{matrix} \mathbf{\text{x+y}} & \mathbf{\text{x-4}} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{\text{-1}} & \mathbf{\text{-222} } \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \mathbf{\text{-7}} & \mathbf{\text{-11} } \\ \end{matrix} \right]$
Ans:
Given
$\begin{align} & \left[ \begin{matrix} \text{x+y} & \text{x-4} \\ \end{matrix} \right]\left[ \begin{matrix} \text{-1} & \text{-222} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{-7} & \text{-11} \\ \end{matrix} \right] \\ & \left[ \text{-x-y+2x-8-2x-2y+2x-8} \right]\text{=}\left[ \begin{matrix} \text{-7} & \text{-11} \\ \end{matrix} \right] \\ & \left[ \text{x-y-8-2y-8} \right]\text{=}\left[ \begin{matrix} \text{-7} & \text{-11} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$\begin{align} & \text{x-y-8=-7}\Rightarrow \text{x-y=1}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\text{(1)} \\ & \text{-2y-8=-11}\Rightarrow \text{y=}\dfrac{\text{3}}{\text{2}} \\ \end{align}$
From (1), $\text{x=}\dfrac{\text{5}}{\text{2}}$
Thus value of $x=2.5$ and $y=1.5$
(iii) $\left[ \begin{matrix} \mathbf{\text{-2}} & \mathbf{\text{0} }& \mathbf{\text{3}} & \mathbf{\text{1}} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{\text{-12} }& \mathbf{\text{x}} \\ \end{matrix} \right]\text{+3}\left[ \begin{matrix} \mathbf{\text{-2}} & \mathbf{\text{1}} \\ \end{matrix} \right]\text{=2}\left[ \begin{matrix} \mathbf{\text{y}} & \mathbf{\text{3}} \\ \end{matrix} \right]$
Ans:
Given
$\begin{align} & \left[ \begin{matrix} -2 & 0 & 3 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} -12 & x \\ \end{matrix} \right]+3\left[ \begin{matrix} -2 & 1 \\ \end{matrix} \right]=2\left[ \begin{matrix} y & 3 \\ \end{matrix} \right] \\ & \left[ \begin{matrix} -12 & x-3 \\ \end{matrix} \right]+\left[ \begin{matrix} -6 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 2y & 6 \\ \end{matrix} \right] \\ & \left[ \begin{matrix} -4 & 2x \\ \end{matrix} \right]=\left[ \begin{matrix} 2y & 6 \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$x=3$ and $y=-2$
17. In each case given below, find:
The order of matrix M.
The matrix M.
(i) $\begin{align} & \text{M }\!\!\times\!\!\text{ }\left[ \begin{matrix}\mathbf{ \text{1} }& \mathbf{\text{1}} & \mathbf{\text{0} }& \mathbf{\text{2}} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \mathbf{\text{1}} & \mathbf{\text{2}} \\ \end{matrix}\text{ }\!\!~\!\!\text{ } \right] \\ & \\ \end{align}$
Ans:
Given
$\text{M }\!\!\times\!\!\text{ }\left[ \begin{matrix} \text{1} & \text{1} & \text{0} & \text{2} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{1} & \text{2} \\ \end{matrix}\text{ }\!\!~\!\!\text{ } \right]$
It is known that matrix multiplication is as
${{\text{A}}_{\text{l }\!\!\times\!\!\text{ n}}}\text{ }\!\!\times\!\!\text{ }{{\text{B}}_{\text{n }\!\!\times\!\!\text{ m}}}\text{=}{{\text{C}}_{\text{l }\!\!\times\!\!\text{ m}}}$
Here $A=M,~B=\left[ \begin{matrix} 1 & 1 & 0 & 2 \\ \end{matrix} \right]\,$ and $C=\left[ \begin{matrix} 1 & 2 \\ \end{matrix} \right]$
Order f B is $2\times 2$ order of C is $1\times 2$
It means order of M will be $1\times 2$
Let $M=\left[ \begin{matrix} a & b \\ \end{matrix} \right]$
So, $\left[ \begin{matrix} a & b \\ \end{matrix} \right]~\times \left[ \begin{matrix} \text{1} & \text{1} & \text{0} & \text{2} \\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 2 \\ \end{matrix} \right]$
$\left[ \begin{matrix} a & a+2b \\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 2 \\ \end{matrix} \right]$
By comparing we have
$a=1$ and $b=\dfrac{1}{2}$
Matrix $M=\left[ \begin{matrix} 1 & \dfrac{1}{2} \\\end{matrix} \right]$
(ii) $\left[ \begin{matrix} \mathbf{\text{1} }& \mathbf{\text{4}} & \mathbf{\text{2}} & \mathbf{\text{1}} \\ \end{matrix} \right]\text{ }\!\!\times\!\!\text{ M=}\left[ \begin{matrix} \mathbf{\text{13}} & \mathbf{\text{5} } \\ \end{matrix}\text{ }\!\!~\!\!\text{ } \right]$
Ans:
Given, $\left[ \begin{matrix} 1 & 4 & 2 & 1 \\ \end{matrix} \right]\times M=\left[ \begin{matrix} 13 & 5 \\ \end{matrix}~ \right]$
It is known that matrix multiplication is as
${{A}_{l\times n}}\times {{B}_{n\times m}}={{C}_{l\times m}}$
Here $A=\left[ \begin{matrix} 1 & 4 & 2 & 1 \\ \end{matrix} \right],~B=M~and~C=\left[ \begin{matrix} 13 & 5 \\ \end{matrix}~ \right]$
Order f A is $2\times 2$ order of C is $2\times 1$
It means order of M will be $2\times 1$
Let $M=\left[ \begin{matrix} a & b \\ \end{matrix} \right]$
So, $\left[ \begin{matrix} 1 & 4 & 2 & 1 \\ \end{matrix} \right]\times \left[ a~b~ \right]=\left[ \begin{matrix} 13 & 5 \\ \end{matrix}~ \right]$
$\left[ \begin{matrix} a+4b & 2a+b \\ \end{matrix} \right]=\left[ \begin{matrix} 13 & 5 \\ \end{matrix}~ \right]$
By comparing we have
$a+4b=13$ …(1)
and $2a+b=5$ …(2)
now, by $\left( 1 \right)\times 2-\left( 2 \right)$, we have
$7b=21\Rightarrow b=3$
From (1), $a=1$
Matrix $M=\left[ \begin{matrix} 1 & 3 \\ \end{matrix}~ \right]$
18. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{2}} & \mathbf{\text{x}} & \mathbf{\text{0}} & \mathbf{\text{1}} \\ \end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \mathbf{\text{4} }& \mathbf{\text{3} }& \mathbf{\text{6}} & \mathbf{\text{0}} & \mathbf{\text{1} } \\ \end{matrix}\text{ }\!\!~\!\!\text{ } \right]$; find the values of x, given that ${{\text{A}}^{\text{2}}}\text{=B}$.
Ans:
Given, $A=\left[ \begin{matrix} 2 & x & 0 & 1 \\ \end{matrix} \right]$ and $B=\left[ \begin{matrix} 4 & 3 & 6 & 0 & 1 \\ \end{matrix}~ \right]$ and
$\begin{align} & {{A}^{2}}=B\Rightarrow \left[ \begin{matrix} 2 & x & 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 2 & x & 0 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} 4 & 3 & 6 & 0 & 1 \\\end{matrix} \right] \\ & \left[ \begin{matrix} 4 & 3 & x & 0 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} 4 & 3 & 6 & 0 & 1 \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
x=12
19. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{3}} & \mathbf{\text{7}} & \mathbf{\text{2}} & \mathbf{\text{4}} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \mathbf{\text{0}} & \mathbf{\text{2}} & \mathbf{\text{5}} & \mathbf{\text{3}} \\ \end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \mathbf{\text{1}} & \mathbf{\text{-5}} &\mathbf{ \text{-4}} & \mathbf{\text{6}} \\ \end{matrix} \right]$. Find:$\text{AB-5C}$.
Ans:
Given that $A=\left[ \begin{matrix} 3 & 7 & 2 & 4 \\ \end{matrix} \right],~B=\left[ \begin{matrix} 0 & 2 & 5 & 3 \\ \end{matrix} \right]$$~A=\left[ 3~7~2~4~ \right],~B=\left[ 0~2~5~3~ \right]$
and $C=\left[ \begin{matrix} 1 & -5 & -4 & 6 \\ \end{matrix} \right]$
$\begin{align} & AB-5C=\left[ \begin{matrix} 3 & 7 & 2 & 4 \\ \end{matrix} \right]\left[ \begin{matrix} 0 & 2 & 5 & 3 \\ \end{matrix} \right]-5\left[ \begin{matrix} 1 & -5 & -4 & 6 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 35 & 27 & 20 & 16 \\ \end{matrix} \right]-\left[ \begin{matrix} 5 & -25 & -20 & 30 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 30 & 52 & 40 & -14 \\ \end{matrix} \right] \\ \end{align}$
19. If A and B are any two $\text{2 }\!\!\times\!\!\text{ 2}$ matrices such that $\text{AB=BA=B}$ is not a zero matrix, what can you say about the matrix A?
Ans:
Given that A and B are any two $2\times 2$ matrices such that $AB=BA=B\ne 0$.
It is known that the identity matrix has a commutative property with any square matrix of the same order and gives the same matrix as a result.
$BI=IB=B$
Therefore, matrix A is an identity matrix of order $2\times 2$.
20. Given $\text{A=}\left[ \begin{matrix} \mathbf{\text{3}} & \mathbf{\text{0}} & \mathbf{\text{0}} &\mathbf{ \text{4}} \\\end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \mathbf{\text{a}} & \mathbf{\text{b}} & \mathbf{\text{0} }& \mathbf{\text{c}} \\ \end{matrix} \right]$ and that $\text{AB=A+B}$; find the values of $\text{a, }\!\!~\!\!\text{ b}$ and $\text{c}$.
Ans:
Given $A=\left[ \begin{matrix} 3 & 0 & 0 & 4 \\ \end{matrix} \right],~B=\left[ \begin{matrix} a & b & 0 & c \\ \end{matrix} \right]$ and
$AB=A+B$
$\begin{align} & \left[ \begin{matrix} 3 & 0 & 0 & 4 \\ \end{matrix} \right]\left[ \begin{matrix} a & b & 0 & c \\ \end{matrix} \right]=\left[ \begin{matrix} 3 & 0 & 0 & 4 \\ \end{matrix} \right]+\left[ \begin{matrix} a & b & 0 & c \\ \end{matrix} \right] \\ & \left[ \begin{matrix} 3a & 3b & 0 & 4c \\ \end{matrix} \right]=\left[ \begin{matrix} 3+a & b & 0 & 4+c \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$3a=3+a\Rightarrow a=\dfrac{3}{2}$
$3b=b\Rightarrow b=0$
$4c=4+c\Rightarrow c=\dfrac{4}{3}$
Therefore we have values of $a=\dfrac{3}{2},~b=0~and~c=\dfrac{4}{3}$.
21. If $\text{P=}\left[ \begin{matrix} \mathbf{\text{1}} &\mathbf{ \text{2} }& \mathbf{\text{2} }&\mathbf{ \text{-1}} \\ \end{matrix} \right]$ and $\text{Q=}\left[ \begin{matrix} \mathbf{\text{1} }&\mathbf{ \text{0}} &\mathbf{ \text{2}} &\mathbf{ \text{1} } \\ \end{matrix} \right]$, then compute:
(i) ${{\text{P}}^{\text{2}}}\text{-}{{\text{Q}}^{\text{2}}}$
Ans:
Given $P=\left[ \begin{matrix} 1 & 2 & 2 & -1 \\ \end{matrix} \right]$ and $Q=\left[ \begin{matrix} 1 & 0 & 2 & 1 \\ \end{matrix} \right]$
$\begin{align} & {{P}^{2}}+{{Q}^{2}}=\left[ \begin{matrix} 1 & 2 & 2 & -1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 2 & 2 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & 0 & 2 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 & 2 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 5 & 0 & 0 & 5 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & 0 & 4 & -1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 6 & 0 & 4 & 4 \\ \end{matrix} \right] \\ \end{align}$
(ii) $\left( \text{P+Q} \right)\left( \text{P-Q} \right)$
Ans:
Given $P=\left[ \begin{matrix} 1 & 2 & 2 & -1 \\ \end{matrix} \right]$ and $Q=\left[ \begin{matrix} 1 & 0 & 2 & 1 \\ \end{matrix} \right]$
$\begin{align} & (P+Q)(P-Q)=\left( \left[ \begin{matrix} 1 & 2 & 2 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & 2 & 2 & -1 \\ \end{matrix} \right] \right)\left( \left[ \begin{matrix} 1 & 2 & 2 & -1 \\ \end{matrix} \right]-\left[ \begin{matrix} 1 & 2 & 2 & -1 \\ \end{matrix} \right] \right) \\ & =\left[ \begin{matrix} 2 & 2 & 4 & 0 \\ \end{matrix} \right]+\left[ \begin{matrix} 0 & 2 & 0 & -2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 0 & 0 & 0 & 8 \\ \end{matrix} \right] \\ \end{align}$
Therefore it is clear that $\left( \text{P+Q} \right)\left( \text{P-Q} \right)\ne {{\text{P}}^{\text{2}}}\text{-}{{\text{Q}}^{\text{2}}}$.
So $\left( \text{P+Q} \right)\left( \text{P-Q} \right)\text{=}{{\text{P}}^{\text{2}}}\text{-}{{\text{Q}}^{\text{2}}}$ is not true for matrix.
22. Given the matrices: $\text{A=}\left[ \begin{matrix} \mathbf{\text{2}} &\mathbf{ \text{1}} & \mathbf{\text{4}} & \mathbf{\text{2}} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \mathbf{\text{3}} & \mathbf{\text{4}} & \mathbf{\text{-1}} & \mathbf{\text{-2}} \\ \end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \mathbf{\text{-3}} & \mathbf{\text{1}} &\mathbf{ \text{0}} &\mathbf{ \text{-2} }\\ \end{matrix} \right]$. Find:
(i) ABC
Ans:
Given $A=\left[ \begin{matrix} 2 & 1 & 4 & 2 \\ \end{matrix} \right],~B=\left[ \begin{matrix} 3 & 4 & -1 & -2 \\ \end{matrix} \right]$ and $C=\left[ \begin{matrix} -3 & 1 & 0 & -2 \\ \end{matrix} \right]$
$\begin{align} & ABC=\left[ \begin{matrix} 2 & 1 & 4 & 2 \\ \end{matrix} \right] \left[ \begin{matrix} 3 & 4 & -1 & -2 \\ \end{matrix} \right] \left[ \begin{matrix} -3 & 1 & 0 & -2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 5 & 6 & 10 & 12 \\ \end{matrix} \right] \left[ \begin{matrix} -3 & 1 & 0 & -2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -15 & -7 & -30 & -14 \\ \end{matrix} \right] \\ \end{align}$
(ii) ACB
Ans:
Given $A=\left[ \begin{matrix} 2 & 1 & 4 & 2 \\ \end{matrix} \right],~B=\left[ \begin{matrix} 3 & 4 & -1 & -2 \\ \end{matrix} \right]$ and $C=\left[ \begin{matrix} -3 & 1 & 0 & -2 \\ \end{matrix} \right]$
$ACB=\left[ \begin{matrix} 2 & 1 & 4 & 2\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]\left[ \begin{matrix} -3 & 1 & 0 & -2\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]\left[ \begin{matrix} 3 & 4 & -1 & -2\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]$
$\text{ }\!\!~\!\!\text{ }=\left[ \begin{matrix} \text{ }\!\!~\!\!\text{ }-6 & 0 & -1 & 20\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]\left[ \begin{matrix} -3 & 1 & 0 & -2\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]$
$\text{ }\!\!~\!\!\text{ }=\left[ \begin{matrix} 18 & -6 & 36 & -12\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]$
Hence, $ABC\ne ACB$
23. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{1}} &\mathbf{ \text{2}} &\mathbf{ \text{3}} & \mathbf{\text{4}} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \mathbf{\text{6}} & \mathbf{\text{1}} & \mathbf{\text{1}} & \mathbf{\text{1}} \\ \end{matrix}\text{ }\!\!~\!\!\text{ } \right]$ and $\text{C=}\left[ \begin{matrix} \mathbf{\text{-2}} & \mathbf{\text{-3}} & \mathbf{\text{0}} &\mathbf{ \text{1}} \\ \end{matrix} \right]$, find each of the following and state if they are equal:
(i) CA+B
Ans:
Given $A=\left[ \begin{matrix} 1 & 2 & 3 & 4 \\ \end{matrix} \right],~B=\left[ \begin{matrix} 6 & 1 & 1 & 1 \\ \end{matrix}~ \right]\,\,and\,C=\left[ \begin{matrix} -2 & -3 & 0 & 1 \\ \end{matrix}~ \right]$
$\begin{align} & CA+B=\left[ \begin{matrix} -2 & -3 & 0 & 1 \\ \end{matrix}~ \right]\left[ \begin{matrix} 1 & 2 & 3 & 4 \\ \end{matrix} \right]+\left[ \begin{matrix} 6 & 1 & 1 & 1 \\ \end{matrix}~ \right] \\ & =\left[ \begin{matrix} -11 & -16 & 3 & 4 \\ \end{matrix}~ \right]+\left[ \begin{matrix} 6 & 1 & 1 & 1 \\ \end{matrix}~ \right] \\ & =\left[ \begin{matrix} -5 & -15 & 4 & 5 \\ \end{matrix}~ \right] \\ \end{align}$
24. A+CB
Ans:
Given $A=\left[ \begin{matrix} 1 & 2 & 3 & 4 \\ \end{matrix} \right],~B=\left[ \begin{matrix} 6 & 1 & 1 & 1 \\ \end{matrix}~ \right]\,\,and\,C=\left[ \begin{matrix} -2 & -3 & 0 & 1 \\ \end{matrix}~ \right]$
$\begin{align} & A+CB=\left[ \begin{matrix} 1 & 2 & 3 & 4 \\ \end{matrix} \right]+\left[ \begin{matrix} -2 & -3 & 0 & 1 \\ \end{matrix}~ \right]\left[ \begin{matrix} 6 & 1 & 1 & 1 \\ \end{matrix}~ \right] \\ & =\left[ \begin{matrix} 1 & 2 & 3 & 4 \\ \end{matrix}~ \right]+\left[ \begin{matrix} -15 & -5 & 1 & 1 \\ \end{matrix}~ \right] \\ & =\left[ \begin{matrix} -14 & -3 & 4 & 5 \\ \end{matrix}~ \right] \\ \end{align}$
Hence they aren’t equal.
25. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{2}} &\mathbf{ \text{1}} & \mathbf{\text{1}} &\mathbf{ \text{3}} \\ \end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \mathbf{\text{3}} &\mathbf{ \text{-11}} \\ \end{matrix} \right]$ find the value of matrix X such that $\text{AX=B}$
Ans:
Given $A=\left[ \begin{matrix} 2 & 1 & 1 & 3 \\ \end{matrix} \right]\,\,and\,B=\left[ \begin{matrix} 3 & -11 \\ \end{matrix} \right]$
We know that if matrix multiplication $AX=B$ is possible then order of X will be equal to order of B as matrix A is a square matrix, so matrix X can be taken as
$X=\left[ \begin{matrix} x & y \\ \end{matrix} \right]$
So, $AX=B\Rightarrow \left[ \begin{matrix} 2 & 1 & 1 & 3 \\ \end{matrix} \right]\left[ \begin{matrix} x & y \\ \end{matrix} \right]=\left[ 3~-11~ \right]$
$\left[ \begin{matrix} 2x+y & x+3y \\ \end{matrix} \right]=\left[ \begin{matrix} 3 & -11 \\ \end{matrix} \right]$
Now by comparing we get
$2x+y=3$ …(1)
$x+3y=-11$ …(2)
By solving (1) and (2) we get
$x=4,~y=-5$
Hence matrix $X=\left[ 4~-5~ \right]$
26. If $\text{A=}\left[ \begin{matrix} \mathbf{\text{4}} &\mathbf{ \text{2}} &\mathbf{ \text{1}} &\mathbf{ \text{1}} \\ \end{matrix}\text{ }\!\!~\!\!\text{ } \right]$. Find $\left( \text{A-2I} \right)\left( \text{A-3I} \right)$.
Ans:
Given $A=\left[ \begin{matrix} 4 & 2 & 1 & 1 \\ \end{matrix} \right]$ and I is unit matrix so, $I=\left[ \begin{matrix} 1 & 0 & 0 & 1 \\ \end{matrix} \right]$
Now $\left( A-2I \right)\left( A-3I \right)=\left( \left[ \begin{matrix} 4 & 2 & 1 & 1 \\ \end{matrix} \right]-2\left[ \begin{matrix} 1 & 0 & 0 & 1 \\ \end{matrix}~ \right] \right)\left( \left[ \begin{matrix} 4 & 2 & 1 & 1 \\ \end{matrix} \right]-3\left[ \begin{matrix} 1 & 0 & 0 & 1 \\ \end{matrix}~ \right] \right)$
$=\left[ \begin{matrix} 2 & 2 & 1 & -1 \\ \end{matrix} \right] \left[ \begin{matrix} 1 & 2 & 1 & -2 \\ \end{matrix} \right]$
$=\left[ \begin{matrix} 4 & 0 & 0 & 4 \\ \end{matrix}~ \right]=4I$
$\left( A-2I \right)\left( A-3I \right)=4I$
27. If $\text{A=}\left[ \begin{matrix} \text{2} & \text{1} & \text{-1} & \text{0} & \text{1} & \text{-2} \\ \end{matrix} \right]$, At is the transpose of matrix A, find:
(i) ${{\text{A}}^{\text{t}}}\text{A}$
Ans:
Given $A=\left[ \begin{matrix} 2 & 1 & -1 & 0 & 1 & -2 \\ \end{matrix} \right]$ then
${{\text{A}}^{\text{t}}}\text{=}\left[ \begin{matrix} \text{2} & \text{0} & \text{1} & 1 & \text{-1} & \text{-2} \\ \end{matrix} \right]$
${{\text{A}}^{\text{t}}}\text{A=}\left[ \begin{matrix} \text{2} & 0 & 1 & \text{1} & \text{-1} & \text{-2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{1} & \text{-1} & \text{0} & \text{1} & \text{-2} \\ \end{matrix} \right]$
$=\left[ \begin{matrix} 4 & 2 & -2 & 2 & 2 & -3 & -2 & -3 & 5 \\ \end{matrix} \right]$
(ii) $\text{A}{{\text{A}}^{\text{t}}}$
Ans:
Given $A=\left[ \begin{matrix} 2 & 1 & -1 & 0 & 1 & -2 \\ \end{matrix} \right]$ then
${{\text{A}}^{\text{t}}}\text{=}\left[ \begin{matrix} \text{2} & \text{0} & \text{1} & 1 & \text{-1} & \text{-2} \\ \end{matrix} \right]$
$\text{A}{{\text{A}}^{\text{t}}}\text{=}\left[ \begin{matrix} \text{2} & \text{1} & \text{-1} & \text{0} & \text{1} & \text{-2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & 0 & 1 & \text{1} & \text{-1} & \text{-2} \\ \end{matrix} \right]$
$=\left[ \begin{matrix} 6 & 3 & 3 & 5 \\ \end{matrix} \right]$
28. If $\text{M=}\left[ \begin{matrix} \mathbf{\text{4}} & \mathbf{\text{1}} & \mathbf{\text{-1}} & \mathbf{\text{2}} \\ \end{matrix} \right]$, show that : $\text{6M-}{{\text{M}}^{\text{2}}}\text{=9I}$; where I is a $\text{2 }\!\!\times\!\!\text{ 2}$ unit matrix.
Ans:
Given $\text{M=}\left[ \begin{matrix} \text{4} & \text{1} & \text{-1} & \text{2} \\ \end{matrix} \right]$
Now, $\text{LHS}\,\text{=}\,\text{6M-}{{\text{M}}^{\text{2}}}$
$\text{=6}\left[ \begin{matrix} 4 & 1 & -1 & 2 \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} 4 & 1 & -1 & 2 \\ \end{matrix} \right]\left[ \begin{matrix} 4 & 1 & -1 & 2 \\ \end{matrix} \right]$
$\begin{align} & =\left[ \begin{matrix} 24 & 6 & -6 & 12 \\ \end{matrix} \right]-\left[ \begin{matrix} 15 & 6 & -6 & 3 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 9 & 0 & 0 & 9 \\ \end{matrix} \right] \\ \end{align}$
$\begin{align} & \text{=9I} \\ & \text{=RHS} \\ \end{align}$
Hence Proved.
29. If $\text{P=}\left[ \begin{matrix} \mathbf{\text{2}} & \mathbf{\text{6}} & \mathbf{\text{3}} & \mathbf{\text{9}} \\ \end{matrix} \right]$ and $\text{Q=}\left[ \begin{matrix} \mathbf{\text{3}} & \mathbf{\text{x}} & \mathbf{\text{y}} & \mathbf{\text{2}} \\ \end{matrix} \right]$, find x and y such that PQ = null matrix
Ans:
Given $\text{P=}\left[ \begin{matrix} \text{2} & \text{6} & \text{3} & \text{9} \\ \end{matrix} \right]$ and $\text{Q=}\left[ \begin{matrix} \text{3} & \text{x} & \text{y} & \text{2} \\ \end{matrix} \right]$
$\begin{align} & \text{PQ}=0\Rightarrow \left[ 2~6~3~9~ \right]\left[ 3~x~y~2~ \right]=0 \\ & \left[ \begin{matrix} 6+6y & 2x+12 & 9+9y & 3x+18 \\ \end{matrix} \right]=0 \\ & \left[ \begin{matrix} 6(1+y) & 2(x+6) & 9(1+y) & 3(x+6) \\ \end{matrix} \right]=0 \\ \end{align}$
By comparing we have
x = -6 and y = -1.
30. Evaluate:
$\mathbf{\left[ \text{2}\,\text{cos }\!\!~\!\!\text{ }\,\text{60 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ }\,\text{-}\,\text{2 }\!\!~\!\!\text{ sin}\,\text{30 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ }\,\text{-}\,\text{tan }\!\!~\!\!\text{ }\,\text{45 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ }\,\text{cos }\!\!~\!\!\text{ }\,\text{0 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ } \right]\left[ \text{cot }\!\!~\!\!\text{ }\,\text{45 }\!\!{}^\circ\!\!\text{ }\,\text{cosec }\!\!~\!\!\text{ }\,\text{30 }\!\!{}^\circ\!\!\text{ }\,\text{sec }\!\!~\!\!\text{ }\,\text{60 }\!\!{}^\circ\!\!\text{ }\,\text{sin }\!\!~\!\!\text{ 90 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ } \right]}$
Ans:
Given
$\left[ \text{2}\,\text{cos }\!\!~\!\!\text{ }\,\text{60 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ }\,\text{-}\,\text{2 }\!\!~\!\!\text{ sin}\,\text{30 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ }\,\text{-}\,\text{tan }\!\!~\!\!\text{ }\,\text{45 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ }\,\text{cos }\!\!~\!\!\text{ }\,\text{0 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ } \right]\left[ \text{cot }\!\!~\!\!\text{ }\,\text{45 }\!\!{}^\circ\!\!\text{ }\,\text{cosec }\!\!~\!\!\text{ }\,\text{30 }\!\!{}^\circ\!\!\text{ }\,\text{sec }\!\!~\!\!\text{ }\,\text{60 }\!\!{}^\circ\!\!\text{ }\,\text{sin }\!\!~\!\!\text{ 90 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ } \right]$
$=\left[ \begin{matrix} 2\times \frac{1}{2} & -2\times \frac{1}{2} & -1 & 1\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]\left[ \begin{matrix} 1 & 2 & 2 & 1\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]$
$\text{ }\!\!~\!\!\text{ }=\left[ \begin{matrix} 1 & -1 & -1 & 1\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]\left[ \begin{matrix} 1 & 2 & 2 & 1\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]$
$\text{ }\!\!~\!\!\text{ }=\left[ \begin{matrix} -1 & 1 & 1 & -1\text{ }\!\!~\!\!\text{ } \\\end{matrix} \right]$
31. State, with reason, whether the following are true or false. A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$.
(i) A+B=B+A
Ans:
Given: A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$
Matrices follow the commutative rule for addition.
Therefore, A+B=B+A, is true.
(ii)A-B=B-A
Ans:
Given: A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$
Matrices do not follow the commutative rule for subtraction.
Therefore, $A-B=B-A$ is false.
(iii) $\left( \text{BC} \right)\text{A=B}\left( \text{CA} \right)$
Ans:
Given: A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$
Matrices do not follow the commutative rule for multiplication.
Therefore, $\left( BC \right)A=B\left( CA \right)$ is false.
(iv) $\left( \text{A+B} \right)\text{C=AC+BC}$
Ans:
Given: A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$
Matrices follow the distributive rule.
Therefore, $\left( A+B \right)C=AC+BC$ is true.
(v) $\text{A}\left( \text{B-C} \right)\text{=AB-AC}$
Ans:
Given: A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$
Matrices follow the distributive rule.
Therefore, $A\left( B-C \right)=AB-AC$ is true.
(vi) $\left( \text{A-B} \right)\text{C=AC-BC}$
Ans:
Given: A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$
Matrices follow the distributive rule.
Therefore, $\left( A-B \right)C=AC-BC$ is true.
(vii) ${{\text{A}}^{\text{2}}}\text{-}{{\text{B}}^{\text{2}}}\text{=}\left( \text{A+B} \right)\left( \text{A-B} \right)$
Ans:
Given: A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$
Matrices follow the distributive rule but not commutative rule over multiplication.
Therefore, ${{A}^{2}}-{{B}^{2}}=\left( A+B \right)\left( A-B \right)$ is false.
(viii) ${{\left( \text{A-B} \right)}^{\text{2}}}\text{=}{{\text{A}}^{\text{2}}}\text{-2AB+}{{\text{B}}^{\text{2}}}$
Ans:
Given: A, B and C are matrices of order $\text{2 }\!\!\times\!\!\text{ 2}$
Matrices follow the distributive rule but not commutative rule over multiplication.
${{\left( A-B \right)}^{2}}={{A}^{2}}-AB-BA+{{B}^{2}}$
Therefore,$~{{\left( A-B \right)}^{2}}={{A}^{2}}-2AB+{{B}^{2}}$ is false.
Exercise-9 D
1. Find x and y, if: $\left[ \begin{matrix} \mathbf{\text{3}} &\mathbf{ \text{-2}} & \mathbf{\text{-1}} &\mathbf{ \text{4}} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{\text{2x}} &\mathbf{ \text{1}} \\ \end{matrix} \right]\text{+2}\left[ \begin{matrix} \mathbf{\text{-4}} & \mathbf{\text{5}} \\ \end{matrix} \right]\text{=4}\left[ \begin{matrix} \mathbf{\text{2}} & \mathbf{\text{y}} \\ \end{matrix} \right]$
Ans:
Given $\left[ \begin{matrix} \text{3} & \text{-2} & \text{-1} & \text{4} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2x} & \text{1} \\ \end{matrix} \right]\text{+2}\left[ \begin{matrix} \text{-4} & \text{5} \\ \end{matrix} \right]\text{=4}\left[ \begin{matrix} \text{2} & \text{y} \\ \end{matrix} \right]$
$\begin{align} & \left[ \begin{matrix} \text{6x-2} & \text{-2x+4} \\ \end{matrix} \right]+\left[ \begin{matrix} \text{-8} & \text{10} \\ \end{matrix} \right]=\left[ \begin{matrix} \text{8} & \text{4y} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{6x-10} & \text{-2x+14} \\ \end{matrix} \right]=\left[ \begin{matrix} \text{8} & \text{4y} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$\text{6x-10=8}\Rightarrow \text{x=3}$
$\text{-2x+14=4y}\Rightarrow \text{y=2}$
Therefore the value of $x=3$ and $y=2$.
2. Find x and y if: $\left[ \begin{matrix} \mathbf{\text{3x}} & \mathbf{\text{8}} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{\text{1}} & \mathbf{\text{4}} & \mathbf{\text{3}} & \mathbf{\text{7}} \\ \end{matrix} \right]\text{-3}\left[ \begin{matrix} \mathbf{\text{2}} & \mathbf{\text{-7}} \\ \end{matrix} \right]\,\text{=}\,\text{5}\left[ \begin{matrix} \mathbf{\text{3}} & \mathbf{\text{2y}} \\ \end{matrix} \right]$
Ans:
Given,
$\left[ \begin{matrix} \text{3x} & \text{8} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{4} & \text{3} & \text{7} \\ \end{matrix} \right]\text{-3}\left[ \begin{matrix} \text{2} & \text{-7} \\ \end{matrix} \right]\,\text{=}\,\text{5}\left[ \begin{matrix} \text{3} & \text{2y} \\ \end{matrix} \right]$
$\begin{align} & \left[ \begin{matrix} \text{3x+24} & \text{12x+56} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{6} & \text{-21} \\ \end{matrix} \right]\,\text{=}\,\left[ \begin{matrix} \text{15} & \text{10} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{3x+18} & \text{12x+77} \\ \end{matrix} \right]\,\text{=}\,\left[ \begin{matrix} \text{15} & \text{10y} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$\text{3x+18=15}\Rightarrow \text{x=-1}$
$\text{12x+77=10y}\Rightarrow \text{y=}\dfrac{\text{65}}{\text{10}}\text{=}\dfrac{\text{13}}{\text{2}}\text{=6}\text{.5}$
Therefore the value of x = -1 and y = 6.5.
3. If $\left[ \begin{matrix} \mathbf{\text{x}} & \mathbf{\text{y} } \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{\text{x} }& \mathbf{\text{y}} \\ \end{matrix} \right]\text{=}\left[ 25 \right]$ and $\left[ \begin{matrix} \mathbf{\text{-x}} & \mathbf{\text{y} } \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{\text{2x}} &\mathbf{ \text{y} } \\ \end{matrix} \right]\text{=}\left[ \text{-2} \right]$; find x and y, if :
(i) $x,~y\in W$ (whole number)
Ans:
Given,
$\left[ \begin{matrix} \text{x} & \text{y} \\ \end{matrix} \right]\left[ \begin{matrix} \text{x} & \text{y} \\ \end{matrix} \right]\text{=}\left[ \text{25} \right]$
$\left[ {{x}^{2}}+{{y}^{2}} \right]=\left[ \text{25} \right]$
$\therefore {{x}^{2}}+{{y}^{2}}\text{=25}$ …(1)
and
$\left[ \begin{matrix} -x & y \\ \end{matrix} \right]\left[ \begin{matrix} \text{2}x & y \\ \end{matrix} \right]\text{=}\left[ \text{-2} \right]$
$\left[ \text{-2}{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}} \right]\text{=}\left[ \text{-2} \right]$
$\therefore \,\text{2}{{\text{x}}^{\text{2}}}\text{-}{{\text{y}}^{\text{2}}}\text{=2}$ …(2)
By adding (1) and (2) we get that
$\text{3}{{\text{x}}^{\text{2}}}\text{=27}\Rightarrow {{\text{x}}^{\text{2}}}\text{=9}$
$\therefore x=\pm \text{3}$ but $x\in W\therefore x=\text{3}$
${{\text{y}}^{\text{2}}}\text{=25-9=16}$
$y=\pm \text{4}$ but $y\in W\therefore y=\text{4}$
Thus the value of $x=\text{3}$ and y = 4
(ii) $x,~y\in Z$ (integers)
Ans:
Given,
$\left[ \begin{matrix} \text{x} & \text{y} \\ \end{matrix} \right]\left[ \begin{matrix} \text{x} & \text{y} \\ \end{matrix} \right]\text{=}\left[ \text{25} \right]$
$\left[ {{x}^{2}}+{{y}^{2}} \right]=\left[ \text{25} \right]$
$\therefore {{x}^{2}}+{{y}^{2}}\text{=25}$ …(1)
And
$\left[ \begin{matrix} -x & y \\ \end{matrix} \right]\left[ \begin{matrix} \text{2}x & y \\ \end{matrix} \right]\text{=}\left[ \text{-2} \right]$
$\left[ \text{-2}{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}} \right]\text{=}\left[ \text{-2} \right]$
$\therefore \,\text{2}{{\text{x}}^{\text{2}}}\text{-}{{\text{y}}^{\text{2}}}\text{=2}$ …(2)
By adding (1) and (2) we get that
$\text{3}{{x}^{2}}=\text{27}\Rightarrow {{x}^{2}}=\text{9}$
$\therefore x=\pm \text{3}$
${{y}^{2}}\text{=25-9=16}$
$y=\pm \text{4}$
Thus, the value of $x=\pm \text{3}$ and $y=\pm \text{4}$
4. Given, $\left[ \begin{matrix} \mathbf{2} & \mathbf{1 }& \mathbf{-3} & \mathbf{4} \\ \end{matrix} \right]X=\left[ \begin{matrix} \mathbf{7} & \mathbf{6} \\ \end{matrix} \right]$. Write:
(i) The order of the matrix X.
Ans:
Given, $\left[ \begin{matrix} \text{2} & \text{1} & \text{-3} & \text{4} \\ \end{matrix} \right]\text{X=}\left[ \begin{matrix} \text{7} & \text{6} \\ \end{matrix} \right]$
It is known that matrix multiplication is as
${{A}_{l\times n}}\times {{B}_{n\times m}}={{C}_{l\times m}}$
Here $A\,=\,\left[ \begin{matrix} \text{2} & \text{1} & \text{-3} & \text{4} \\ \end{matrix} \right]\text{,}\,\text{B=X}$ and $\text{C}\,\text{=}\,\left[ \begin{matrix} \text{7} & \text{6} \\ \end{matrix} \right]$
Order of A is $\text{2 }\!\!\times\!\!\text{ 2}$ order of C is $\text{2 }\!\!\times\!\!\text{ 1}$
It means the order of X will be $\text{2 }\!\!\times\!\!\text{ 1}$.
(ii) The matrix X.
Ans:
Given, $\left[ \begin{matrix} \text{2} & \text{1} & \text{-3} & \text{4} \\ \end{matrix} \right]\text{X=}\left[ \begin{matrix} \text{7} & \text{6} \\ \end{matrix} \right]$
Matrix X can be taken as $X=\left[ \begin{matrix} x & y \\ \end{matrix} \right]$
$\left[ \begin{matrix} \text{2} & \text{1} & \text{-3} & \text{4} \\ \end{matrix} \right]\left[ \begin{matrix} x & y \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{7} & \text{6} \\ \end{matrix} \right]$
$\left[ \begin{matrix} \text{2x+y} & \text{-3x+4y} \\ \end{matrix}\text{ }\!\!~\!\!\text{ } \right]\text{=}\left[ \begin{matrix} \text{7} & \text{6} \\ \end{matrix} \right]$
By comparing we have
2x+y=7 …(1)
$\text{-3x+4y=6}$ …(2)
By $\left( \text{1} \right)\,\text{ }\!\!\times\!\!\text{ }\,\text{4-}\left( \text{2} \right)$ we have
$\text{11}x=\text{22}\therefore x=\text{2}$
$\text{y=7-8=-1}$
Thus, matrix $\text{X=}\left[ \text{2 }\!\!~\!\!\text{ -1 }\!\!~\!\!\text{ } \right]$
5. Evaluate:
$\left[ \begin{matrix} \mathbf{cos~45{}^\circ} & \mathbf{sin30{}^\circ} & \mathbf{\sqrt{2}~cos~0{}^\circ} & \mathbf{sin~0{}^\circ ~} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{sin~45{}^\circ} & \mathbf{cos~90{}^\circ} & \mathbf{sin~90{}^\circ} & \mathbf{cot~45{}^\circ} \\ \end{matrix} \right]$
Ans:
Given
$\left[ \begin{matrix} cos~45{}^\circ & sin30{}^\circ & \sqrt{2}~cos~0{}^\circ & sin~0{}^\circ ~ \\ \end{matrix} \right]\left[ \begin{matrix} sin~45{}^\circ & cos~90{}^\circ & sin~90{}^\circ & cot~45{}^\circ \\ \end{matrix} \right]$
$\begin{align} & \text{=}\left[ \begin{matrix} \dfrac{\text{1}}{\sqrt{\text{2}}} & \dfrac{\text{1}}{\text{2}} & \sqrt{\text{2}} & \text{0} \\ \end{matrix} \right]\left[ \begin{matrix} \dfrac{\text{1}}{\sqrt{\text{2}}} & \text{0} & \text{1} & \text{1} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \dfrac{\text{1}}{\text{2}}+\dfrac{\text{1}}{\text{2}} & \text{0+}\dfrac{\text{1}}{\text{2}} & \text{1} & \text{0} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{1} & \dfrac{\text{1}}{\text{2}} & \text{1} & \text{0} \\ \end{matrix} \right] \\ \end{align}$
6. If $A=\left[ \begin{matrix} \mathbf{0} & \mathbf{-1} & \mathbf{4 }& \mathbf{-3} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{-5} & \mathbf{6} \\ \end{matrix} \right]$ and $3A\times M=2B$; find matrix M.
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{0} & \text{-1} & \text{4} & \text{-3} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{-5} & \text{6} \\ \end{matrix} \right]$
$\text{3}A\times M=\text{2}B$
Matrix M can be taken as, $M=\left[ x~y~ \right]$
$\begin{align} & \text{3}\left[ \begin{matrix} \text{0} & \text{-1} & \text{4} & \text{-3} \\ \end{matrix} \right]\left[ \begin{matrix} x & y \\ \end{matrix} \right]\text{=2}\left[ \begin{matrix} \text{-5} & \text{6} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{-3y} & \text{12x-9y} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{-10} & \text{12} \\ \end{matrix} \right] \\ \end{align}$
By comparing
$\text{-3y=-10}\therefore \text{y=}\dfrac{\text{10}}{\text{3}}$
$\text{12x-9y=12}$
$\text{x=}\dfrac{\text{42}}{\text{12}}\text{=}\dfrac{\text{7}}{\text{2}}$
Matrix, $M=\left[ \begin{matrix} \dfrac{\text{7}}{\text{2}} & \dfrac{\text{10}}{\text{3}} \\ \end{matrix}\text{ }\!\!~\!\!\text{ } \right]$
7. If $\left[ \begin{matrix} \mathbf{a} &\mathbf{ 3 }&\mathbf{ 4} &\mathbf{ 1} \\ \end{matrix} \right]+\left[ \begin{matrix} \mathbf{2} &\mathbf{ b} &\mathbf{ 1} &\mathbf{ -2} \\ \end{matrix} \right]-\left[ \begin{matrix} \mathbf{1} & \mathbf{1} &\mathbf{ -2} &\mathbf{ c} \\ \end{matrix} \right]=\left[ \begin{matrix} \mathbf{5} &\mathbf{ 0} &\mathbf{ 7} &\mathbf{ 3} \\ \end{matrix} \right]$, find the value of a, b and c.
Ans:
Given, $\left[ \begin{matrix} \text{a} & \text{3} & \text{4} & \text{1} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{2} & \text{b} & \text{1} & \text{-2} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} & \text{c} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{5} & \text{0} & \text{7} & \text{3} \\ \end{matrix} \right]$
$\left[ \begin{matrix} \text{a+2-1} & \text{3+b-1} & \text{4+1+2} & \text{1-2-c} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{5} & \text{0} & \text{7} & \text{3} \\ \end{matrix} \right]$
By comparing we have
$a+\text{1}=\text{5}\therefore a=\text{4}$
$b+\text{2=0}\therefore b=\text{-2}$
$-\text{1}-c=\text{3}\therefore c=-\text{4}$
Thus the value of $a=\text{4},~b=-\text{2}$ and c = -4.
8. If $A=\left[ \begin{matrix} \mathbf{1} & \mathbf{2 }& \mathbf{2} & \mathbf{1} \\ \end{matrix} \right]$ and $B=\left[ \begin{matrix} \mathbf{2} &\mathbf{ 1} &\mathbf{ 1} &\mathbf{ 2} \\ \end{matrix} \right]$ ; find :
(i) $\mathbf{A\left( BA \right)}$
Ans:
Given, $A=\left[ \begin{matrix} 1 & 2 & 2 & 1 \\ \end{matrix} \right]$ and $B=\left[ \begin{matrix} 2 & 1 & 1 & 2 \\ \end{matrix} \right]$
$A\left( BA \right)=\left[ \begin{matrix} 1 & 2 & 2 & 1 \\ \end{matrix} \right]\left( \left[ \begin{matrix} 1 & 2 & 2 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 2 & 1 & 1 & 2 \\ \end{matrix} \right] \right)$
$=\left[ \begin{matrix} 1 & 2 & 2 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 4 & \text{5} & 5 & 4 \\ \end{matrix} \right]$
$=\left[ \begin{matrix} 14 & 13 & 13 & 1 \\\end{matrix}\text{4} \right]$
(ii) $\mathbf{\left( AB \right)B}$
Ans:
Given, $A=\left[ \begin{matrix} 1 & 2 & 2 & 1 \\ \end{matrix} \right]$ and $B=\left[ \begin{matrix} 2 & 1 & 1 & 2 \\ \end{matrix} \right]$
$\left( \text{AB} \right)\text{B=}\left( \left[ \begin{matrix} \text{1} & \text{2} & \text{2} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{1} & \text{1} & \text{2} \\ \end{matrix} \right] \right)\left[ \begin{matrix} \text{2} & \text{1} & \text{1} & \text{2} \\ \end{matrix} \right]$
$\begin{align} & \text{=}\left[ \begin{matrix} \text{4} & \text{5} & \text{5} & \text{4} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{1} & \text{1} & \text{2} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{13} & \text{14} & \text{14} & \text{13} \\ \end{matrix} \right] \\ \end{align}$
9. Find x and y, if: $\left[ \begin{matrix} \mathbf{x} & \mathbf{3x} & \mathbf{y} & \mathbf{4y} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{2} & \mathbf{1} \\ \end{matrix} \right]=\left[ \begin{matrix} \mathbf{5} & \mathbf{12} \\ \end{matrix} \right]$.
Ans:
Given,
$\left[ \begin{matrix} x & 3x & y & 4y \\ \end{matrix} \right]\left[ \begin{matrix} 2 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} 5 & 12 \\ \end{matrix} \right]$
$\left[ \begin{matrix} \text{5x} & \text{6y} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{5} & \text{12} \\ \end{matrix} \right]$
By comparing we have,
$x=\text{1},~y=\text{2}$.
10. If matrix $X=\left[ \begin{matrix} \mathbf{-3} & \mathbf{4 }& \mathbf{2} & \mathbf{-3} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{2} & \mathbf{-2} \\ \end{matrix} \right]$ and $2X-3Y=\left[ \begin{matrix} \mathbf{10} & \mathbf{-8} \\ \end{matrix} \right]$, find the matrix $'X'$ and matrix $'{Y}'$.
Ans:
Given
$X=\left[ \begin{matrix} -3 & 4 & 2 & -3 \\ \end{matrix} \right]\left[ \begin{matrix} 2 & -2 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 4 & 1 & 0 \\ \end{matrix} \right]$
and $\text{2X-3Y=}\left[ \begin{matrix} \text{10} & \text{-8} \\ \end{matrix} \right]$
$\text{3Y=2X-}\left[ \begin{matrix} \text{10} & \text{-8} \\ \end{matrix} \right]\text{=2}\left[ \begin{matrix} \text{-14} & \text{10} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{10} & \text{-8} \\ \end{matrix} \right]$
$\text{Y=}\dfrac{\text{1}}{\text{3}}\left[ \begin{matrix} \text{-38} & \text{28} \\ \end{matrix} \right]$
$\text{Y=}\left[ \begin{matrix} \text{-}\dfrac{\text{38}}{\text{3}} & \dfrac{\text{28}}{\text{3}} \\ \end{matrix} \right]$
11. Given $A=\left[ \begin{matrix} \mathbf{2} & \mathbf{-1} &\mathbf{ 2} &\mathbf{ 0} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{-3} &\mathbf{ 2} &\mathbf{ 4} & \mathbf{0 } \\ \end{matrix} \right]$ and $C=\left[ \begin{matrix} \mathbf{1} &\mathbf{ 0} &\mathbf{ 0} &\mathbf{ 2} \\ \end{matrix} \right]$, find the matrix X such that
(i) $A+X=2B+C$ .
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{2} & \text{-1} & \text{2} & \text{0} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{-3} & \text{2} & \text{4} & \text{0} \\ \end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]$
$A+X=\text{2}B+C$
$X=\text{2}B+C-A$
$\text{=2}\left[ \begin{matrix} \text{-3} & \text{2} & \text{4} & \text{0} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{2} & \text{-1} & \text{2} & \text{0} \\ \end{matrix} \right]$
$\text{=}\left[ \begin{matrix} \text{-6+1-2} & \text{4+0+1} & \text{8+0-2} & \text{0+0-0 }\!\!~\!\!\text{ } \\\end{matrix} \right]$
$\text{X=}\left[ \begin{matrix} \text{-7} & \text{5} & \text{6} & \text{0} \\\end{matrix} \right]$
12. Find the value of x, given that ${{A}^{2}}=B$, $A=\left[ \begin{matrix} \mathbf{2} & \mathbf{12 }& \mathbf{0} &\mathbf{ 1} \\ \end{matrix} \right]$ and $B=\left[ \begin{matrix} \mathbf{4} &\mathbf{ x} &\mathbf{ 0} &\mathbf{ 1} \\\end{matrix} \right]$
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{2} & \text{12} & \text{0} & \text{1} \\ \end{matrix} \right]$ and $\text{B=}\left[ \begin{matrix} \text{4} & \text{x} & \text{0} & \text{1} \\ \end{matrix} \right]$
${{A}^{2}}=B$
$\begin{align} & \left[ \begin{matrix} \text{2} & \text{12} & \text{0} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{12} & \text{0} & \text{1} \\ \end{matrix} \right]=\left[ \begin{matrix} \text{4} & \text{x} & \text{0} & \text{1} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{4} & \text{36} & \text{0} & \text{1} \\ \end{matrix} \right]=\left[ \begin{matrix} \text{4} & \text{x} & \text{0} & \text{1} \\ \end{matrix} \right] \\ \end{align}$
Thus, the value of x = 36.
13. If $A=\left[ \begin{matrix} \mathbf{2} &\mathbf{ 5 }& \mathbf{1} &\mathbf{ 3} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{4} & \mathbf{-2} &\mathbf{ -1} &\mathbf{ 3} \\ \end{matrix} \right]$ and I is the identity matrix of the same order and At is the transpose of matrix A, find ${{A}^{t}}B+BI$.
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{2} & \text{5} & \text{1} & \text{3} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{4} & \text{-2} & \text{-1} & \text{3} \\ \end{matrix} \right]$
Transpose matrix of A, ${{\text{A}}^{\text{t}}}\text{=}\left[ \begin{matrix} \text{2} & \text{5} & \text{1} & \text{3} \\ \end{matrix} \right]$
${{A}^{t}}B+BI=\left[ \begin{matrix} 2 & 5 & 1 & 3 \\\end{matrix} \right]\left[ \begin{matrix} 4 & -2 & -1 & 3 \\\end{matrix} \right]+\left[ \begin{matrix} 4 & -2 & -1 & 3 \\\end{matrix} \right]\left[ \begin{matrix} 1 & 0 & 0 & 1 \\\end{matrix} \right]$
$=\left[ \begin{matrix} 7 & -1 & 17 & -1 \\\end{matrix} \right]+\left[ \begin{matrix} 4 & -2 & -1 & 3 \\\end{matrix} \right]$
$=\left[ \begin{matrix} 11 & -3 & -1 & 2 \\\end{matrix} \right]$
14. Given $A=\left[ \begin{matrix} \mathbf{2} & \mathbf{-6} & \mathbf{2} & \mathbf{0} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{-3} & \mathbf{2} & \mathbf{4 }& \mathbf{0} \\ \end{matrix} \right]$ and $C=\left[ \begin{matrix} \mathbf{4} & \mathbf{0 }& \mathbf{0} &\mathbf{ 2 } \\ \end{matrix} \right]$. Find the matrix X such that $A+2X=2B+C$ .
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{2} & \text{-6} & \text{2} & \text{0} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{-3} & \text{2} & \text{4} & \text{0} \\ \end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \text{4} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]$
$\text{A+2X=2B+C}$
$\text{2X=2B+C-A}$
$\text{X=}\frac{\text{1}}{\text{2}}\left( \text{2}\left[ \begin{matrix} \text{-3} & \text{2} & \text{4} & \text{0} \\\end{matrix} \right]\text{+}\left[ \begin{matrix} \text{4} & \text{0} & \text{0} & \text{2} \\\end{matrix} \right]\text{-}\left[ \begin{matrix} \text{2} & \text{-6} & \text{2} & \text{0} \\\end{matrix} \right] \right)$
$\text{=}\frac{\text{1}}{\text{2}}\left[ \begin{matrix} \text{-6+4-2} & \text{4+0+6} & \text{8+0-2} & \text{0+2-0} \\\end{matrix} \right]$
$\text{X=}\left[ \begin{matrix} \text{-}\frac{\text{4}}{\text{2}} & \frac{\text{10}}{\text{2}} & \frac{\text{6}}{\text{2}} & \frac{\text{2}}{\text{2}} \\\end{matrix} \right]\text{=}\left[ \begin{matrix} \text{-2} & \text{5} & \text{3} & \text{1} \\\end{matrix} \right]$
15. Let $A=\left[ \begin{matrix} \mathbf{4} & \mathbf{-2} &\mathbf{ 6 }&\mathbf{ -3} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{0} & \mathbf{2} & \mathbf{1} &\mathbf{ -1} \\ \end{matrix} \right]$ and $C=\left[ \begin{matrix} -2 & 3 & 1 & -1 \\ \end{matrix} \right]$. Find ${{A}^{2}}-A+BC$.
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{4} & \text{-2} & \text{6} & \text{-3} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{0} & \text{2} & \text{1} & \text{-1} \\ \end{matrix} \right]$ and $\text{C=}\left[ \begin{matrix} \text{-2} & \text{3} & \text{1} & \text{-1} \\ \end{matrix} \right]$
$\begin{align} & {{\text{A}}^{\text{2}}}\text{-A+BC=}\left[ \begin{matrix} \text{4} & \text{-2} & \text{6} & \text{-3} \\ \end{matrix} \right]\left[ \begin{matrix} \text{4} & \text{-2} & \text{6} & \text{-3} \\ \end{matrix} \right]-\left[ \begin{matrix} \text{4} & \text{-2} & \text{6} & \text{-3} \\ \end{matrix} \right]+\left[ \begin{matrix} \text{0} & \text{2} & \text{1} & \text{-1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{-2} & \text{3} & \text{1} & \text{-1} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \text{4} & \text{-2} & \text{6} & \text{-3} \\ \end{matrix} \right]-\left[ \begin{matrix} \text{4} & \text{-2} & \text{6} & \text{-3} \\ \end{matrix} \right]+\left[ \begin{matrix} \text{2} & \text{-2} & \text{-3} & \text{4} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \text{2} & \text{-2} & \text{-3} & \text{4} \\ \end{matrix} \right] \\ \end{align}$
16. Let $A=\left[ \begin{matrix} \mathbf{1} & \mathbf{0} & \mathbf{2} & \mathbf{1} \\ \end{matrix} \right],\,B=\left[ \begin{matrix} \mathbf{2} &\mathbf{ 3} &\mathbf{ -1} & \mathbf{0} \\ \end{matrix} \right]$. Find ${{A}^{2}}+AB+{{B}^{2}}$
Ans:
Given, $\text{A=}\left[ \begin{matrix} \text{1} & \text{0} & \text{2} & \text{1} \\\end{matrix} \right]\text{,}\,\text{B=}\left[ \begin{matrix} \text{2} & \text{3} & \text{-1} & \text{0} \\ \end{matrix} \right]$
$\begin{align} & {{\text{A}}^{\text{2}}}\text{+AB+}{{\text{B}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{1} & \text{0} & \text{2} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{0} & \text{2} & \text{1} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{1} & \text{0} & \text{2} & \text{1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{3} & \text{-1} & \text{0} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{2} & \text{3} & \text{-1} & \text{0} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{3} & \text{-1} & \text{0} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{1} & \text{0} & \text{4} & \text{1} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{2} & \text{3} & \text{3} & \text{6} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{1} & \text{6} & \text{-2} & \text{-3} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{1+2+1} & \text{0+3+6} & \text{4+3-2} & \text{1+6-3} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{4} & \text{9} & \text{5} & \text{4} \\ \end{matrix} \right] \\ \end{align}$
17. If $A=\left[ \begin{matrix} \mathbf{3} & \mathbf{a} & \mathbf{-4} & \mathbf{8} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{c} & \mathbf{4} & \mathbf{-3 }& \mathbf{0} \\ \end{matrix} \right],~C=\left[ \begin{matrix} \mathbf{-1} & \mathbf{4} & \mathbf{3} & \mathbf{b} \\ \end{matrix} \right]$ and $3A-2C=6B$, find the values of a, b and c.
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{3} & \text{a} & \text{-4} & \text{8} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{c} & \text{4} & \text{-3} & \text{0} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ C=}\left[ \begin{matrix} \text{-1} & \text{4} & \text{3} & \text{b} \\ \end{matrix} \right]$
$\text{3A-2C=6B}$
$\begin{align} & \text{3}\left[ \begin{matrix} \text{3} & \text{a} & \text{-4} & \text{8} \\ \end{matrix} \right]\text{-2}\left[ \begin{matrix} \text{-1} & \text{4} & \text{3} & \text{b} \\ \end{matrix} \right]\text{=6}\left[ \begin{matrix} \text{c} & \text{4} & \text{-3} & \text{0} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{9} & \text{3a} & \text{-12} & \text{24} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{-2} & \text{8} & \text{6} & \text{b} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{6c} & \text{24} & \text{-18} & \text{0} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{11} & \text{3a-8} & \text{-18} & \text{24-2b} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{6c} & \text{24} & \text{-18} & \text{0} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$\text{11=6c}\Rightarrow \text{c=}\dfrac{\text{11}}{\text{6}}$
$\text{3a-8=24}\Rightarrow \text{a=}\dfrac{\text{32}}{\text{3}}$
$\text{24-2b=0}\Rightarrow \text{b=12}$
Hence value of $\text{a=}\dfrac{\text{32}}{\text{3}}\text{, }\!\!~\!\!\text{ b=12}$ and $\text{c=}\dfrac{\text{11}}{\text{6}}$.
18. Given $A=\left[ \begin{matrix} \mathbf{p} & \mathbf{0} & \mathbf{0} & \mathbf{2} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{0} & \mathbf{-q} &\mathbf{ 1} &\mathbf{ 0} \\ \end{matrix} \right],~C=\left[ \begin{matrix} \mathbf{2} & \mathbf{-2} & \mathbf{2} & \mathbf{2} \\ \end{matrix} \right]$ and $BA={{C}^{2}}$. Find the value of p and q.
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{p} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{0} & \text{-q} & \text{1} & \text{0} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ C=}\left[ \begin{matrix} \text{2} & \text{-2} & \text{2} & \text{2} \\ \end{matrix} \right]$ and $BA={{C}^{2}}$
$\begin{align} & \left[ \begin{matrix} \text{0} & \text{-q} & \text{1} & \text{0} \\\end{matrix} \right]\left[ \begin{matrix} \text{p} & \text{0} & \text{0} & \text{2} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{2} & \text{-2} & \text{2} & \text{2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{-2} & \text{2} & \text{2} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{0} & \text{-2q} & \text{p} & \text{0} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{0} & \text{-8} & \text{8} & \text{0} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
p = 8 and q = 4
19. Given $A=\left[ \begin{matrix} \mathbf{3} & \mathbf{-2} & \mathbf{-1} &\mathbf{ 4} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{6} & \mathbf{1} \\ \end{matrix} \right],~C=\left[ \begin{matrix} \mathbf{-4} & \mathbf{5} \\ \end{matrix} \right]$ and $D=\left[ \begin{matrix} \mathbf{2} & \mathbf{2} \\ \end{matrix} \right]$.
Find: AB+2C-4D.
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{3} & \text{-2} & \text{-1} & \text{4} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{6} & \text{1} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ C=}\left[ \begin{matrix} \text{-4} & \text{5} \\ \end{matrix} \right]$ and $\text{D=}\left[ \begin{matrix} \text{2} & \text{2} \\ \end{matrix} \right]$
$\begin{align} & \text{AB+2C-4D=}\left[ \begin{matrix} \text{3} & \text{-2} & \text{-1} & \text{4} \\ \end{matrix} \right]\left[ \begin{matrix} \text{6} & \text{1} \\ \end{matrix} \right]+\text{2}\left[ \begin{matrix} \text{-4} & \text{5} \\ \end{matrix} \right]-\text{4}\left[ \begin{matrix} \text{2} & \text{2} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \text{16} & \text{-2} \\ \end{matrix} \right]+\left[ \begin{matrix} \text{-8} & \text{10} \\ \end{matrix} \right]-\left[ \begin{matrix} \text{8} & \text{8} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \text{16-8-8} & \text{-2+10-8} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \text{0} & \text{0} \\ \end{matrix} \right] \\ \end{align}$
20. Evaluate: $\left[ \begin{matrix} \mathbf{4sin~30{}^\circ} & \mathbf{2~cos~60{}^\circ} & \mathbf{sin~90{}^\circ} & \mathbf{2~cos~0{}^\circ ~} \\ \end{matrix} \right]\left[ \begin{matrix} \mathbf{4} & \mathbf{5} & \mathbf{5 }& \mathbf{4} \\ \end{matrix} \right]$.
Ans:
Given, $\left[ \begin{matrix} \text{4sin }\!\!~\!\!\text{ 30 }\!\!{}^\circ\!\!\text{ } & \text{2 }\!\!~\!\!\text{ cos }\!\!~\!\!\text{ 60 }\!\!{}^\circ\!\!\text{ } & \text{sin }\!\!~\!\!\text{ 90 }\!\!{}^\circ\!\!\text{ } & \text{2 }\!\!~\!\!\text{ cos }\!\!~\!\!\text{ 0 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ } \\ \end{matrix} \right]\left[ \begin{matrix} \text{4} & \text{5} & \text{5} & \text{4} \\ \end{matrix} \right]$
$\begin{align} & \text{=}\left[ \begin{matrix} \text{4 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{2}} & \text{2 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{2}} & \text{1} & \text{2 }\!\!\times\!\!\text{ 1} \\ \end{matrix} \right]\left[ \begin{matrix} \text{4} & \text{5} & \text{5} & \text{4} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{2} & \text{1} & \text{1} & \text{2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{4} & \text{5} & \text{5} & \text{4} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{13} & \text{14} & \text{14} & \text{13} \\ \end{matrix} \right] \\ \end{align}$
21. If $A=\left[ \begin{matrix} \mathbf{3} & \mathbf{1} & \mathbf{-1} &\mathbf{ 2} \\ \end{matrix} \right]$ and I is unit matrix, find ${{A}^{2}}-5A+7I$.
Ans:
Given, ${{A}^{2}}-\text{5}A+7I$
$\begin{align} & \text{=}\left[ \begin{matrix} \text{3} & \text{1} & \text{-1} & \text{2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{3} & \text{1} & \text{-1} & \text{2} \\ \end{matrix} \right]\text{-5}\left[ \begin{matrix} \text{3} & \text{1} & \text{-1} & \text{2} \\ \end{matrix} \right]\text{+7}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{8} & \text{5} & \text{-5} & \text{3} \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{15} & \text{5} & \text{-5} & \text{10} \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{7} & \text{0} & \text{0} & \text{7} \\ \end{matrix} \right] \\ \end{align}$
$\begin{align} & \text{=}\left[ \begin{matrix} \text{8-15+7} & \text{5-5+0} & \text{-5+5+0} & \text{3-10+7} \\ \end{matrix} \right] \\ & \text{=}\left[ \begin{matrix} \text{0} & \text{0} & \text{0} & \text{0} \\ \end{matrix} \right] \\ \end{align}$
22. Given $A=\left[ \begin{matrix} \mathbf{2} & \mathbf{0} & \mathbf{-1} &\mathbf{ 7} \\ \end{matrix} \right]$ and $I=\left[ \begin{matrix} \mathbf{1} &\mathbf{ 0} &\mathbf{ 0 }& \mathbf {1} \\ \end{matrix} \right]$ and ${{A}^{2}}=9A+mI$. Find m.
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{2} & \text{0} & \text{-1} & \text{7} \\ \end{matrix} \right]$ and $\text{I=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\ \end{matrix} \right]$
${{A}^{2}}=9A+mI$
$\begin{align} & \left[ \begin{matrix} \text{2} & \text{0} & \text{-1} & \text{7} \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{0} & \text{-1} & \text{7} \\ \end{matrix} \right]=\text{9}\left[ \begin{matrix} \text{2} & \text{0} & \text{-1} & \text{7} \\ \end{matrix} \right]+m\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\\end{matrix} \right] \\ & \left[ \begin{matrix} \text{4} & \text{0} & \text{-9} & \text{49} \\ \end{matrix} \right]=\left[ \begin{matrix} \text{18} & \text{0} & \text{-9} & \text{63} \\ \end{matrix} \right]+\left[ \begin{matrix} \text{m} & \text{0} & \text{0} & m \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{4} & \text{0} & \text{-9} & \text{49} \\ \end{matrix} \right]=\left[ \begin{matrix} \text{18+m} & \text{0} & \text{-9} & \text{63+m} \\ \end{matrix} \right] \\ \end{align}$
By comparing we get
$\text{4=18+m}\Rightarrow \text{m=-14}$
$\text{49=63+m}\Rightarrow \text{m=-14}$
From both the caparisons we have m = -14.
23. Given matrix $A=\left[ 4~sin~30{}^\circ ~cos~0{}^\circ ~cos~0{}^\circ ~4~sin~30{}^\circ ~ \right]$ and $B=\left[ \begin{matrix} \mathbf{4} & \mathbf{5} \\ \end{matrix} \right]$ . If $AX=B$
(i) Write the order of matrix X.
Ans:
Given $\text{A=}\left[ \text{4 }\!\!~\!\!\text{ sin }\!\!~\!\!\text{ 30 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ cos }\!\!~\!\!\text{ 0 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ cos }\!\!~\!\!\text{ 0 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ 4 }\!\!~\!\!\text{ sin }\!\!~\!\!\text{ 30 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ } \right]$ and $\text{B=}\left[ \begin{matrix} \text{4} & \text{5} \\ \end{matrix} \right]$
$AX=B$
The order of matrix X is $\text{2 }\!\!\times\!\!\text{ 2}$, as this is the only way to define the multiplication in the given equation.
(ii) Find the matrix X.
Ans:
Given $\text{A=}\left[ \text{4 }\!\!~\!\!\text{ sin }\!\!~\!\!\text{ 30 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ cos }\!\!~\!\!\text{ 0 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ cos }\!\!~\!\!\text{ 0 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ 4 }\!\!~\!\!\text{ sin }\!\!~\!\!\text{ 30 }\!\!{}^\circ\!\!\text{ }\!\!~\!\!\text{ } \right]$ and $\text{B=}\left[ \begin{matrix} \text{4} & \text{5} \\ \end{matrix} \right]$
$AX=B$
Let matrix $X=\left[ \begin{matrix} p & q \\ \end{matrix} \right]$
$\left[ \begin{matrix} \text{4 }\!\!~\!\!\text{ sin }\!\!~\!\!\text{ 30 }\!\!{}^\circ\!\!\text{ } & \text{cos }\!\!~\!\!\text{ 0 }\!\!{}^\circ\!\!\text{ } & \text{cos }\!\!~\!\!\text{ 0 }\!\!{}^\circ\!\!\text{ } & \text{4 }\!\!~\!\!\text{ sin }\!\!~\!\!\text{ 30 }\!\!{}^\circ\!\!\text{ } \\ \end{matrix} \right]\left[ \begin{matrix} p & q \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{4} & \text{5} \\ \end{matrix} \right]$
$\begin{align} & \left[ \begin{matrix} \text{4 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{2}} & \text{1} & \text{1} & \text{4 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{2}} \\ \end{matrix} \right]\left[ \begin{matrix} \text{p} & \text{q} \\ \end{matrix} \right]\text{ }\!\!~\!\!\text{ =}\left[ \begin{matrix} \text{4} & \text{5} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{2} & \text{1} & \text{1} & \text{2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{p} & \text{q} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{4} & \text{5} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{2p+q} & \text{p+2q} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{4} & \text{5} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$\text{2p+q=4}$ …(1)
$\text{p+2q=5}$ …(2)
By $\left( \text{1} \right)\text{ }\!\!\times\!\!\text{ -}\left( \text{2} \right)$, $\text{4p-p=8-5}\Rightarrow \text{p=1}$
From (1), $\text{q=4-2 }\!\!\times\!\!\text{ 1=2}$
Thus the matrix $\text{X=}\left[ \begin{matrix} \text{1} & \text{2} \\ \end{matrix} \right]$
24. If $A=\left[ \begin{matrix} \mathbf{1} & \mathbf{3} & \mathbf{3} & \mathbf{4} \\ \end{matrix} \right],~B=\left[ \begin{matrix} \mathbf{-2} & \mathbf{1} & \mathbf{-3} & \mathbf{2} \\ \end{matrix} \right]$ and ${{A}^{2}}-5{{B}^{2}}=5C$. Find matrix C, where C is a $2\times 2$ matrix.
Ans:
Given $\text{A=}\left[ \begin{matrix} \text{1} & \text{3} & \text{3} & \text{4} \\ \end{matrix} \right]\text{, }\!\!~\!\!\text{ B=}\left[ \begin{matrix} \text{-2} & \text{1} & \text{-3} & \text{2} \\ \end{matrix} \right]$ and ${{A}^{2}}-\text{5}{{B}^{2}}=\text{5}C$
Let matrix $C=\left[ \begin{matrix} p & q & r & s \\ \end{matrix} \right]$
${{A}^{2}}-\text{5}{{B}^{2}}=\text{5}C$
$\begin{align} & \left[ \begin{matrix} \text{1} & \text{3} & \text{3} & \text{4} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{3} & \text{3} & \text{4} \\ \end{matrix} \right]\text{ }\!\!~\!\!\text{ -5}\left[ \begin{matrix} \text{-2} & \text{1} & \text{-3} & \text{2} \\ \end{matrix} \right]\left[ \begin{matrix} \text{-2} & \text{1} & \text{-3} & \text{2} \\ \end{matrix} \right]\text{=5}\left[ \begin{matrix} \text{p} & \text{q} & \text{r} & \text{s} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{10} & \text{15} & \text{15} & \text{25} \\ \end{matrix} \right]\text{-5}\left[ \begin{matrix} \text{1} & \text{0} & \text{0} & \text{1} \\ \end{matrix} \right]\text{=5}\left[ \begin{matrix} \text{p} & \text{q} & \text{r} & \text{s} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{1} & \text{3} & \text{3} & \text{4} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{p} & \text{q} & \text{r} & \text{s} \\ \end{matrix} \right] \\ \end{align}$
Thus matrix $C=\left[ \begin{matrix} \text{1} & \text{3} & \text{3} & \text{4} \\\end{matrix} \right]$
25. Given matrix $B=\left[ \begin{matrix} \mathbf{1} & \mathbf{1} & \mathbf{8} & \mathbf{3} \\ \end{matrix} \right]$. Find the matrix X, if $X={{B}^{2}}-4B$. Hence, solve for a and b given $X\left[ \begin{matrix} \mathbf{a} & \mathbf{b} \\ \end{matrix} \right]=\left[ \begin{matrix} \mathbf{5} & \mathbf {50} \\\end{matrix} \right]$.
Ans:
Given $\text{B=}\left[ \begin{matrix} \text{1} & \text{1} & \text{8} & \text{3} \\ \end{matrix} \right]$ and $X={{B}^{2}}-\text{4}B$
$\begin{align} & X=\left[ \begin{matrix} \text{1} & \text{1} & \text{8} & \text{3} \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{1} & \text{8} & \text{3} \\ \end{matrix} \right]-\text{4}\left[ \begin{matrix} \text{1} & \text{1} & \text{8} & \text{3} \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} \text{9} & \text{4} & \text{32} & \text{17} \\ \end{matrix} \right]-\left[ \begin{matrix} \text{1} & \text{1} & \text{8} & \text{3} \\ \end{matrix} \right] \\ & X=\left[ \begin{matrix} \text{8} & \text{3} & \text{24} & \text{14} \\ \end{matrix} \right] \\ \end{align}$
Now,
$\begin{align} & \left[ \begin{matrix} \text{8} & \text{3} & \text{24} & \text{14} \\ \end{matrix} \right]\left[ \begin{matrix} a & b \\ \end{matrix} \right]=\left[ \begin{matrix} \text{5} & \text{50} \\ \end{matrix} \right] \\ & \left[ \begin{matrix} \text{8a+3b} & \text{24a+14b} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{5} & \text{50} \\ \end{matrix} \right] \\ \end{align}$
By comparing we have
$\text{8a+3b=5}$ …(1)
$\text{12a+7b=25}$ …(2)
By $\left( \text{1} \right)\text{ }\!\!\times\!\!\text{ 7-}\left( \text{2} \right)\text{ }\!\!\times\!\!\text{ 3}$ we have
$\text{56a-36a=35-75}$
$\text{20a=-40}\Rightarrow \text{a=-2}$
From (1), $\text{b=}\dfrac{\text{1}}{\text{3}}\left( \text{5-8 }\!\!\times\!\!\text{ }\left( \text{-2} \right) \right)\text{=7}$
Hence, the value of $\text{a}\,\text{=}\,\text{-2}$ and . ....
Order of the Matrices
The order of the Matrices having m rows and n columns will be m*n. Matrices are generally represented by capital letters and their order.
Rows of the Matrices
The horizontal lines in the Matrices are called the rows of the Matrices .
Columns of Matrices
The columns are an arrangement of numbers in a vertical line of matrices.
Type of Matrices
Row Matrices : The row Matrices are the Matrices having a single row. For example, $\begin{bmatrix}1 &2 &3 \end{bmatrix}$
Column Matrices : A column Matrix is a Matrix having a single column.
Square Matrix: Square matrices are the matrices that have the number of rows and number of columns equal.
Rectangular Matrices: The matrices in which the number of rows is not equal to the number of rows.
Zero Matrices: Zero matrices are matrices that have each element as 0.
Diagonal Matrices: The diagonal matrix is the matrix having all of the elements as 0 except the elements of diagonal.
Identity Matrices : The identity matrices are matrices having all other elements as 0 and diagonal elements as 1.
Transpose of a Matrices: The transpose of a matrix is obtained by interchanging its rows with its columns.
Equality of Matrices : Two matrices are equal only if :
Both of the matrices have the same order.
Corresponding elements of both of the matrices are the same.
Addition of Matrices : Two matrices can be only added if they have the same order. You can simply add the matrices by adding simply their corresponding terms.
Subtraction of Matrices : You can only subtract matrices if they have the same order. To subtract a Matrix from another, you can just simply subtract it from the corresponding terms of another one.
If A, B, and C are matrices which have same order, then :
Matrix Addition is commutative.
A+ B = B+ A
Matrix addition is associative.
A+ (B+C)= ( A+B)+C
A+ X = B
X= B- A
Additive Identity of Matrices : Additive identity is the term by which adding any number will be as it is.0 is the additive identity of every number. Similarly, the additive identity of the Matrices is a thanks Matrices .
Additive Inverse of a Matrices : The additive inverse of a Matrices is the Matrices after which adding you get the identity Matrices . So,the identity Matrices of A will be - A.
If A+ B = B+ A= 0, then A is the additive inverse of B and B is the additive inverse of A.
Multiplication of Matrices by a scalar : A scalar is here a real number.
Case 1:
You can simply multiply a Matrices by a scalar just multiplying each of the elements of the Matrices by the scaler
Case 2:
You can simply multiply two matrices A and B
only if the number of columns in A is equal to the number of rows in B. If A has an order m*n then B should have ordered a*b then the AB Matrices is possible only If n = a.
Also, the order of Matrices AB will be m*b.
For example, if A Matrices has order 2*3 anhashave order 3*4, then AB will have order 2*4.
Conclusion
Students should solve Class 10 Maths Solutions Chapter 9 Selina concisely to know the exact question paper pattern, weightage of marks, important topics, and time duration. These previous year question papers are prepared by an expert according to the latest ICSE Class 10 Maths syllabus. Students should solve the question paper of different years to improve overall performance and they should work on their weak points.
Our subject experts prepare Class 10 Chapter 9 Mathematics solutions for Selina concisely in accordance with the Class 10 Maths syllabus. Students can refer to these solutions whenever they have any doubt or are stuck at any point while solving the Concise Selina textbook questions. The solutions are explained in a proper step-by-step method using simple language so that students can understand them easily. Selina’s textbook is considered as the best reference material while revising the entire syllabus for the ICSE board exam.
FAQs on Concise Mathematics Class 10 ICSE Solutions for Chapter 9 - Matrices
1. How can students prepare for ICSE Class 10 Maths Examination?
Following are the steps that students need to follow while preparing for the exam:
Dedicate at least 3-4 hours a day to study the topics taught that day.
Solve as many as sample papers to get an idea of the questions that could be asked in the examination.
Practice more numerical problems.
By solving previous year question papers, students can get an idea of the repeated questions.
2. Do I need to practice all of the questions of Selina Concise Mathematics Class 10?
If you are preparing for the long term and have sufficient time to solve all these questions then it would be very beneficial for you. However, if the exams are coming then you should solve some selective questions. Always select those questions which are more conceptual and are common for exams. You can also revise some of the previous year's questions from this Chapter to get better results in a short time.
3. How can I understand the integers Chapter of Selina Concise Mathematics Class 7 well?
To understand the integers Chapter of Selina Concise Mathematics of Class 7th well, you just need to learn all the concepts well. Good command concepts can be a tool to get better results in. After learning all the concepts, you can make revision notes and can solve as many questions as you can do. It will surely enhance your capabilities
4. Is doing only these questions from Selina Concise Mathematics Class 10 enough?
All Chapters are nearly equally important for the exam. So you have to keep a good command over concepts for better results. Doing as many questions as you can surely boost your confidence and knowledge. You can also pick up some of the previous year's questions and most important questions from the platform of Vedantu.
5. From where I can get the best study material for Selina Concise Mathematics Class 10?
You can find Selina's concise Mathematics solutions easily on Vedantu.
The solutions are designed by experienced teachers and subject matter experts. Students can also download the free PDF of Selina's concise solutions of Mathematics on the Vedantu. All solutions are well explained and designed creatively.
All PDFs are free and easily available on the Vedantu platform. For a better experience, you can also use the app of Vedantu. You can also download Selina's concise Mathematics Class 10th Chapters notes. At Vedantu, you can find the study material of ICSE ,CBSE, and other state boards. Vedantu is also one of the best platforms in India to prepare for competitive exams like JEE and NEET.