Answer
Verified
112.8k+ views
Hint: The third equation of motion provides the final velocity of an object under uniform acceleration given the initial velocity and the distance traveled. By using the third equation of motion formula, apply the given values to find the minimum distance. When acceleration is constant, Velocity is proportional to time and Displacement is proportional to the square of time and Displacement is proportional to the square of the velocity.
Formula Used:
We will be using the formula of the third equation of motion i.e.,${v^2} - {u^2} = 2as$.
Complete step by step answer:
Given: The speed of the car $50km{h^{ - 1}}$
When brakes are applied final velocity becomes zero.
So we apply the third equation of motion
${v^2} - {u^2} = 2as$
Where $u$ is the initial speed of the car $50km{h^{ - 1}}$
$v$ is the final speed of the car that is zero
$a$ is the acceleration
\[s\] is the distance that is $6m$
We know that, Distance $ = $average velocity $ \times $Time
Therefore, for constant acceleration
Average velocity$ = $\[\dfrac{{{\text{final velocity}} \times {\text{initial velocity}}}}{2}\]
Average velocity $ = \dfrac{{(v + u)}}{2}$
Hence Distance $s = \dfrac{{({v^2} - {u^2})}}{{2a}}$
Applying the value in the third equation of motion,
${v^2} - 50 = 2a \times 6$
The final velocity of the car is $v = 0$
Substituting the velocity of the car $v = 0$, and we can calculate the acceleration a is given by
\[a = \dfrac{{ - 2500}}{{2 \times 6}}\]
$a = \dfrac{{ - 2500}}{{12}}$
To find the minimum stopping distance
${v^2} = 2as + {u^2}$
${100^2} = 2 \times (\dfrac{{ - 2500}}{{12}})s$
$s = 10000 \times \dfrac{6}{{2500}}$
$s = 24m$
Therefore the distance s is calculated
Hence the minimum stopping distance of the car is option (D), $24m$.
Notes: Dynamics and Kinematics are the two main descriptions of motion. Equation of motion can be used to derive the components like acceleration, velocity, and time. The relation between the components such as displacement, velocity, acceleration, speed, time, and distance are called Equations of motion. The third equation of motion is also called Laws of constant acceleration.
Formula Used:
We will be using the formula of the third equation of motion i.e.,${v^2} - {u^2} = 2as$.
Complete step by step answer:
Given: The speed of the car $50km{h^{ - 1}}$
When brakes are applied final velocity becomes zero.
So we apply the third equation of motion
${v^2} - {u^2} = 2as$
Where $u$ is the initial speed of the car $50km{h^{ - 1}}$
$v$ is the final speed of the car that is zero
$a$ is the acceleration
\[s\] is the distance that is $6m$
We know that, Distance $ = $average velocity $ \times $Time
Therefore, for constant acceleration
Average velocity$ = $\[\dfrac{{{\text{final velocity}} \times {\text{initial velocity}}}}{2}\]
Average velocity $ = \dfrac{{(v + u)}}{2}$
Hence Distance $s = \dfrac{{({v^2} - {u^2})}}{{2a}}$
Applying the value in the third equation of motion,
${v^2} - 50 = 2a \times 6$
The final velocity of the car is $v = 0$
Substituting the velocity of the car $v = 0$, and we can calculate the acceleration a is given by
\[a = \dfrac{{ - 2500}}{{2 \times 6}}\]
$a = \dfrac{{ - 2500}}{{12}}$
To find the minimum stopping distance
${v^2} = 2as + {u^2}$
${100^2} = 2 \times (\dfrac{{ - 2500}}{{12}})s$
$s = 10000 \times \dfrac{6}{{2500}}$
$s = 24m$
Therefore the distance s is calculated
Hence the minimum stopping distance of the car is option (D), $24m$.
Notes: Dynamics and Kinematics are the two main descriptions of motion. Equation of motion can be used to derive the components like acceleration, velocity, and time. The relation between the components such as displacement, velocity, acceleration, speed, time, and distance are called Equations of motion. The third equation of motion is also called Laws of constant acceleration.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line