
A chess game between \[X\] and \[Y\] is won by whoever first wins a total of 2 games. \[X\]’s chances of winning, drawing or losing a particular game are\[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] . The games are independent. Then find the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
A. \[\dfrac{1}{6}\]
B. \[\dfrac{1}{4}\]
C. \[\dfrac{1}{2}\]
D. None of these
Answer
139.5k+ views
Hint: Use the given probabilities of winning, drawing, or losing a particular game of the player \[X\] to calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\]. Then calculate the possible ways where player \[Y\] wins the match in the \[{4^{th}}\] game. In the end, substitute the values of the probabilities in that equation and simplify it to get the required answer.
Formula used:
Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:
The given probabilities of winning, drawing, or losing a particular game of player \[X\] are \[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] respectively.
Let’s calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\].
When the player \[X\] wins, the player \[Y\] loses the match.
So, \[P\left( {Y loose} \right) = \dfrac{1}{6}\]
When the player \[X\] loses, the player \[Y\] wins the match.
So, \[P\left( {Y win} \right) = \dfrac{1}{2}\]
And the probability of drawing the match is, \[P\left( {Draw} \right) = \dfrac{1}{3}\].
Let \[P\left( E \right)\] be the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
So, the player \[Y\] wins that match in the \[{4^{th}}\] game is fixed.
The possible ways are,
\[\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) \] and \[\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right)\]
In a first way, the results of the first 3 games can be arranged in \[3!\] ways.
In a second way, the possibility of the drawing the game occurs 2 times.
Therefore, the probability that \[Y\] wins that match in the \[{4^{th}}\] game is
\[P\left( E \right) = 3! \times P\left( {\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right) + {}^3{C_2} \times P\left( {\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right)\]
\[ \Rightarrow P\left( E \right) = 6 \times \left( {\dfrac{1}{6} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}} \right) + \dfrac{{3!}}{{1! \times 2!}} \times \left( {\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} } \right)\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{2}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{6}\]
Hence the correct option is A.
Note: Always remember to calculate the number of ways of arranging the possible result of each game. Students often forget to calculate the arrangements of the results and directly calculate the probability.
Formula used:
Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:
The given probabilities of winning, drawing, or losing a particular game of player \[X\] are \[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] respectively.
Let’s calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\].
When the player \[X\] wins, the player \[Y\] loses the match.
So, \[P\left( {Y loose} \right) = \dfrac{1}{6}\]
When the player \[X\] loses, the player \[Y\] wins the match.
So, \[P\left( {Y win} \right) = \dfrac{1}{2}\]
And the probability of drawing the match is, \[P\left( {Draw} \right) = \dfrac{1}{3}\].
Let \[P\left( E \right)\] be the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
So, the player \[Y\] wins that match in the \[{4^{th}}\] game is fixed.
The possible ways are,
\[\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) \] and \[\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right)\]
In a first way, the results of the first 3 games can be arranged in \[3!\] ways.
In a second way, the possibility of the drawing the game occurs 2 times.
Therefore, the probability that \[Y\] wins that match in the \[{4^{th}}\] game is
\[P\left( E \right) = 3! \times P\left( {\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right) + {}^3{C_2} \times P\left( {\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right)\]
\[ \Rightarrow P\left( E \right) = 6 \times \left( {\dfrac{1}{6} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}} \right) + \dfrac{{3!}}{{1! \times 2!}} \times \left( {\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} } \right)\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{2}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{6}\]
Hence the correct option is A.
Note: Always remember to calculate the number of ways of arranging the possible result of each game. Students often forget to calculate the arrangements of the results and directly calculate the probability.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
