Answer
Verified
404.8k+ views
Hint – In this question use the relation between distance, time and speed that is ${\text{distance = speed }} \times {\text{ time}}$. Use the concept that the time after which they will meet at the starting point will be the L.C.M of the individual times they take to cover the given circumference at their respective speeds.
Complete step-by-step answer:
Given data
Circumference of a circular field = 360 km.
Speed of cyclist Sumeet = 12 km/hr.
And the speed of cyclist Johan = 15 km/hr.
Now as we know that time is the ratio of distance to speed.
So the time taken by Sumeet to complete one revolution of a circular field = $\dfrac{{360}}{{12}} = 30$ hr.
And the time taken by Johan to complete one revolution of a circular field = $\dfrac{{360}}{{15}} = 24$ hr.
Now it is given that they start at the same point so they meet again at the starting point is the L.C.M of respective times.
So we have to find out the L.C.M of 30 and 24.
So first factorize 24 and 30.
So factors of 30 are
$ \Rightarrow 30 = 2 \times 3 \times 5$
And the factors of 24 are
$ \Rightarrow 24 = 2 \times 2 \times 2 \times 3$
As we know L.C.M is the product of common factors and remaining factors together.
So the L.C.M of 24 and 30 is
$ \Rightarrow L.C.M = 2 \times 2 \times 2 \times 3 \times 5 = 120$
So they will meet again after 120 hours at the starting point.
So this is the required answer.
Note – There can be another method to solve this problem, we can use the concept of relative speed, in this we will be making one cyclist stationary and will be giving its speed to another cyclist but exactly in the opposite direction, then using the relationship between distance, time and speed, the time can be calculated.
Complete step-by-step answer:
Given data
Circumference of a circular field = 360 km.
Speed of cyclist Sumeet = 12 km/hr.
And the speed of cyclist Johan = 15 km/hr.
Now as we know that time is the ratio of distance to speed.
So the time taken by Sumeet to complete one revolution of a circular field = $\dfrac{{360}}{{12}} = 30$ hr.
And the time taken by Johan to complete one revolution of a circular field = $\dfrac{{360}}{{15}} = 24$ hr.
Now it is given that they start at the same point so they meet again at the starting point is the L.C.M of respective times.
So we have to find out the L.C.M of 30 and 24.
So first factorize 24 and 30.
So factors of 30 are
$ \Rightarrow 30 = 2 \times 3 \times 5$
And the factors of 24 are
$ \Rightarrow 24 = 2 \times 2 \times 2 \times 3$
As we know L.C.M is the product of common factors and remaining factors together.
So the L.C.M of 24 and 30 is
$ \Rightarrow L.C.M = 2 \times 2 \times 2 \times 3 \times 5 = 120$
So they will meet again after 120 hours at the starting point.
So this is the required answer.
Note – There can be another method to solve this problem, we can use the concept of relative speed, in this we will be making one cyclist stationary and will be giving its speed to another cyclist but exactly in the opposite direction, then using the relationship between distance, time and speed, the time can be calculated.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main