
A long copper wire is wound in the form of a coil of the radius . A current of is passed through this coil and the magnetic induction at the center of this coil is noted. The same wire is now folded end to end and a coil of the same radius r is prepared and the same current is passed through it. The magnetic induction at the center:
Will be doubled
Will be halved
Will remain the same
Will drop to zero.
Answer
141.3k+ views
Hint: In this question, A long wire is wound in the form of a coil of radius r and later the wire is now folded end to end and the coil of the radius r is prepared and the same current is passed through it.
Complete step by step answer:
A coil of wire designed to form a strong magnetic field inside the coil is called a solenoid. The magnetic field due to wires can become quite stronger by wrapping the wire repeatedly around a cylinder. The applied current and the number of turns per unit length both are directly proportional to the magnetic field within the solenoid.
Here, the strength of the magnetic field is diminished because the length of the solenoid is also decreased. That is, the magnetic induction at the center will be halved as the length of the solenoid and magnetic field strength are directly proportional.
Hence the right answer is in option .
Note: 1. The number of turns N refers to the number of loops the solenoid has.
2. A stronger magnetic field can be produced by a greater amount of loops.
3. There will be no dependence on the diameter of the solenoid.
4. The field strength does not depend on the position inside the solenoid.
Complete step by step answer:
A coil of wire designed to form a strong magnetic field inside the coil is called a solenoid. The magnetic field due to wires can become quite stronger by wrapping the wire repeatedly around a cylinder. The applied current and the number of turns per unit length both are directly proportional to the magnetic field within the solenoid.
Here, the strength of the magnetic field is diminished because the length of the solenoid is also decreased. That is, the magnetic induction at the center will be halved as the length of the solenoid and magnetic field strength are directly proportional.
Hence the right answer is in option
Note: 1. The number of turns N refers to the number of loops the solenoid has.
2. A stronger magnetic field can be produced by a greater amount of loops.
3. There will be no dependence on the diameter of the solenoid.
4. The field strength does not depend on the position inside the solenoid.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹33,300 per year
EMI starts from ₹2,775 per month
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
