Answer
Verified
99.6k+ views
Hint: In this solution, we will first calculate the resonant frequency of the circuit. Then we will calculate the net reactance of the circuit and the power delivered to the circuit for a frequency half of the resonant frequency.
Formula used: In this solution, we will use the following formula:
-Resonant frequency of series LCR circuit: $f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{1}{{LC}}} $ where $L$ is the inductance and $C$ is the capacitance of the circuit.
1 - Capacitive reactance: ${X_C} = \dfrac{1}{{2\pi fC}}$
2- Inductive reactance: ${X_L} = 2\pi fL$
3- Magnitude of Impedance of a series LCR circuit: \[\left| z \right| = \sqrt {{R^2} + {{\left( {X_L^2 - X_C^2} \right)}^2}} \] where $R$ is the resistance, ${X_L}$ is the inductive impedance, and ${X_C}$ is the capacitive inductance.
Complete step by step answer:
In a series LCR circuit, the applied frequency is one-half of the resonant frequency as given to us. Let us start by finding the resonant frequency of the circuit which is calculated as
$f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{1}{{LC}}} $
Substituting $L = 50 \times {10^{ - 3}}\,H$ and $C = 5 \times {10^{ - 6}}\,F$, we get
$f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{1}{{10 \times {{10}^{ - 10}}}}} $
Which gives us
$f = \dfrac{{{{10}^5}}}{{2\pi \sqrt {10} }}$
Now the net reactance of the circuit will be
\[\left| z \right| = \sqrt {{R^2} + {{\left( {X_L^2 - X_C^2} \right)}^2}} \]
Substituting the value of ${X_C} = \dfrac{1}{{2\pi fC}}$ and ${X_L} = 2\pi fL$ and $R = 8\,\Omega $, we get the net impedance as
$\left| z \right| = 150.21\,{\text{ohm}}$
Then the current in the circuit will be calculated as the ratio of the RMS voltage and the net impedance as determined from ohm’s law as:
$i = \dfrac{{{E_{RMS}}}}{{\left| z \right|}}$
$ \Rightarrow i = \dfrac{{400}}{{150.21}} = 2.66\,A$
Then the average power delivered to the circuit will be
$P = {i^2}R$
$ \Rightarrow P = {(2.66)^2} \times 8$
Which can be simplified to
$P = 56.7\,W \approx 57\,W$ which corresponds to option (B).
Note: The formulae that we have used is only valid for a series LCR circuit connected with a sinusoidally varying input voltage. We should be aware of the formulae of reactance and net impedance as well as other basic concepts of circuits to answer this question.
Formula used: In this solution, we will use the following formula:
-Resonant frequency of series LCR circuit: $f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{1}{{LC}}} $ where $L$ is the inductance and $C$ is the capacitance of the circuit.
1 - Capacitive reactance: ${X_C} = \dfrac{1}{{2\pi fC}}$
2- Inductive reactance: ${X_L} = 2\pi fL$
3- Magnitude of Impedance of a series LCR circuit: \[\left| z \right| = \sqrt {{R^2} + {{\left( {X_L^2 - X_C^2} \right)}^2}} \] where $R$ is the resistance, ${X_L}$ is the inductive impedance, and ${X_C}$ is the capacitive inductance.
Complete step by step answer:
In a series LCR circuit, the applied frequency is one-half of the resonant frequency as given to us. Let us start by finding the resonant frequency of the circuit which is calculated as
$f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{1}{{LC}}} $
Substituting $L = 50 \times {10^{ - 3}}\,H$ and $C = 5 \times {10^{ - 6}}\,F$, we get
$f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{1}{{10 \times {{10}^{ - 10}}}}} $
Which gives us
$f = \dfrac{{{{10}^5}}}{{2\pi \sqrt {10} }}$
Now the net reactance of the circuit will be
\[\left| z \right| = \sqrt {{R^2} + {{\left( {X_L^2 - X_C^2} \right)}^2}} \]
Substituting the value of ${X_C} = \dfrac{1}{{2\pi fC}}$ and ${X_L} = 2\pi fL$ and $R = 8\,\Omega $, we get the net impedance as
$\left| z \right| = 150.21\,{\text{ohm}}$
Then the current in the circuit will be calculated as the ratio of the RMS voltage and the net impedance as determined from ohm’s law as:
$i = \dfrac{{{E_{RMS}}}}{{\left| z \right|}}$
$ \Rightarrow i = \dfrac{{400}}{{150.21}} = 2.66\,A$
Then the average power delivered to the circuit will be
$P = {i^2}R$
$ \Rightarrow P = {(2.66)^2} \times 8$
Which can be simplified to
$P = 56.7\,W \approx 57\,W$ which corresponds to option (B).
Note: The formulae that we have used is only valid for a series LCR circuit connected with a sinusoidally varying input voltage. We should be aware of the formulae of reactance and net impedance as well as other basic concepts of circuits to answer this question.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main