A simple harmonic motion has an amplitude $A$ and time period $T$ . Find the time required by it to travel directly from $x = 0$ to $x = \dfrac{A}{2}$ .
Answer
Verified
122.7k+ views
Hint: Use the formula of the displacement of the simple harmonic motion and substitute the displacement in it. From the simplified relation substitute the angular frequency formula to find the time required to travel the displacement of half the amplitude.
Useful formula:
(1) The formula of the displacement of the simple harmonic motion is given by
$x = A\sin \omega t$
Where $x$ is the displacement of the wave, $A$ is the amplitude of the simple harmonic motion and $\omega $ is the angular frequency of the wave and $t$ is the time taken for the displacement.
(2) The formula of the angular frequency of the simple harmonic motion is given by
$\omega = \dfrac{{2\pi }}{T}$
Where $\omega $ is the angular frequency of the wave and $T$ is the time period of the wave.
Complete step by step solution:
It is given that the amplitude and the time period of the simple harmonic motion is $A$ and $T$ respectively.
Initial position is $x = 0$ and the final position is $x = \dfrac{A}{2}$
Using the formula of the displacement of the simple harmonic motion,
$x = A\sin \omega t$
Substituting the displacement in the above equation, we get
$
\dfrac{A}{2} = A\sin \omega t \\
\omega t = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\omega t = \dfrac{\pi }{6} \\
$
Substituting the formula of the angular frequency in the above step, we get
$\dfrac{{2\pi }}{T}t = \dfrac{\pi }{6}$
By cancelling the similar terms in the above equation,
$t = \dfrac{T}{{12}}$
Hence the time required to travel from one position to the other is $\dfrac{T}{{12}}$ .
Note: In the simple harmonic motion, the restoring force is equal to the object magnitude and it is the periodic motion. The sine wave is an example of this type of motion. Time period is the reciprocal of the angular frequency. Remember the formula of the displacement of simple harmonic motion.
Useful formula:
(1) The formula of the displacement of the simple harmonic motion is given by
$x = A\sin \omega t$
Where $x$ is the displacement of the wave, $A$ is the amplitude of the simple harmonic motion and $\omega $ is the angular frequency of the wave and $t$ is the time taken for the displacement.
(2) The formula of the angular frequency of the simple harmonic motion is given by
$\omega = \dfrac{{2\pi }}{T}$
Where $\omega $ is the angular frequency of the wave and $T$ is the time period of the wave.
Complete step by step solution:
It is given that the amplitude and the time period of the simple harmonic motion is $A$ and $T$ respectively.
Initial position is $x = 0$ and the final position is $x = \dfrac{A}{2}$
Using the formula of the displacement of the simple harmonic motion,
$x = A\sin \omega t$
Substituting the displacement in the above equation, we get
$
\dfrac{A}{2} = A\sin \omega t \\
\omega t = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\omega t = \dfrac{\pi }{6} \\
$
Substituting the formula of the angular frequency in the above step, we get
$\dfrac{{2\pi }}{T}t = \dfrac{\pi }{6}$
By cancelling the similar terms in the above equation,
$t = \dfrac{T}{{12}}$
Hence the time required to travel from one position to the other is $\dfrac{T}{{12}}$ .
Note: In the simple harmonic motion, the restoring force is equal to the object magnitude and it is the periodic motion. The sine wave is an example of this type of motion. Time period is the reciprocal of the angular frequency. Remember the formula of the displacement of simple harmonic motion.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Charging and Discharging of Capacitor
Physics Average Value and RMS Value JEE Main 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Mechanical Properties of Fluids Class 11 Notes: CBSE Physics Chapter 9
JEE Main Course 2025: Get All the Relevant Details
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry