Answer
Verified
108.9k+ views
Hint: Use the formula of the displacement of the simple harmonic motion and substitute the displacement in it. From the simplified relation substitute the angular frequency formula to find the time required to travel the displacement of half the amplitude.
Useful formula:
(1) The formula of the displacement of the simple harmonic motion is given by
$x = A\sin \omega t$
Where $x$ is the displacement of the wave, $A$ is the amplitude of the simple harmonic motion and $\omega $ is the angular frequency of the wave and $t$ is the time taken for the displacement.
(2) The formula of the angular frequency of the simple harmonic motion is given by
$\omega = \dfrac{{2\pi }}{T}$
Where $\omega $ is the angular frequency of the wave and $T$ is the time period of the wave.
Complete step by step solution:
It is given that the amplitude and the time period of the simple harmonic motion is $A$ and $T$ respectively.
Initial position is $x = 0$ and the final position is $x = \dfrac{A}{2}$
Using the formula of the displacement of the simple harmonic motion,
$x = A\sin \omega t$
Substituting the displacement in the above equation, we get
$
\dfrac{A}{2} = A\sin \omega t \\
\omega t = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\omega t = \dfrac{\pi }{6} \\
$
Substituting the formula of the angular frequency in the above step, we get
$\dfrac{{2\pi }}{T}t = \dfrac{\pi }{6}$
By cancelling the similar terms in the above equation,
$t = \dfrac{T}{{12}}$
Hence the time required to travel from one position to the other is $\dfrac{T}{{12}}$ .
Note: In the simple harmonic motion, the restoring force is equal to the object magnitude and it is the periodic motion. The sine wave is an example of this type of motion. Time period is the reciprocal of the angular frequency. Remember the formula of the displacement of simple harmonic motion.
Useful formula:
(1) The formula of the displacement of the simple harmonic motion is given by
$x = A\sin \omega t$
Where $x$ is the displacement of the wave, $A$ is the amplitude of the simple harmonic motion and $\omega $ is the angular frequency of the wave and $t$ is the time taken for the displacement.
(2) The formula of the angular frequency of the simple harmonic motion is given by
$\omega = \dfrac{{2\pi }}{T}$
Where $\omega $ is the angular frequency of the wave and $T$ is the time period of the wave.
Complete step by step solution:
It is given that the amplitude and the time period of the simple harmonic motion is $A$ and $T$ respectively.
Initial position is $x = 0$ and the final position is $x = \dfrac{A}{2}$
Using the formula of the displacement of the simple harmonic motion,
$x = A\sin \omega t$
Substituting the displacement in the above equation, we get
$
\dfrac{A}{2} = A\sin \omega t \\
\omega t = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\omega t = \dfrac{\pi }{6} \\
$
Substituting the formula of the angular frequency in the above step, we get
$\dfrac{{2\pi }}{T}t = \dfrac{\pi }{6}$
By cancelling the similar terms in the above equation,
$t = \dfrac{T}{{12}}$
Hence the time required to travel from one position to the other is $\dfrac{T}{{12}}$ .
Note: In the simple harmonic motion, the restoring force is equal to the object magnitude and it is the periodic motion. The sine wave is an example of this type of motion. Time period is the reciprocal of the angular frequency. Remember the formula of the displacement of simple harmonic motion.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main