Answer
Verified
110.7k+ views
Hint The radius of the soap bubble can be determined by using the electric potential produced by the point charge $Q$, by using this formula and the conditions which are given in the question, the radius of the soap bubble can be determined.
Useful formula:
The electric potential produced by the point charge can be determined by,
$V = \dfrac{{kQ}}{R}$
Where, $V$ is the potential developed in the soap bubble, $k$ is the constant, $Q$ is the point charge which is placed in the centre of the bubble and $R$ is the radius of the soap bubble.
Complete step by step solution
Given that,
The soap bubble is given as negative charge.
By the formula,
The electric potential produced by the point charge can be determined by,
$V = \dfrac{{kQ}}{R}\,.......................\left( 1 \right)$
Where, $V$ is the potential developed in the soap bubble, $k$ is the constant, $Q$ is the point charge which is placed in the centre of the bubble and $R$ is the radius of the soap bubble.
In the above equation (1), the charge and the radius both are inversely proportional. If the charge is given as negative means, the charge is decreasing, so that the potential difference also decreases, if the potential difference decreases, then the radius is increased.
Hence, the option (B) is the correct answer.
Note The potential developed is directly proportional to the charge which is placed in the centre of the circle and the potential developed is inversely proportional to the radius of the circle. As the charge increases, the potential developed also increases. As the charge decreases, the potential developed also decreases, if the potential developed decreases then the radius is increased.
Useful formula:
The electric potential produced by the point charge can be determined by,
$V = \dfrac{{kQ}}{R}$
Where, $V$ is the potential developed in the soap bubble, $k$ is the constant, $Q$ is the point charge which is placed in the centre of the bubble and $R$ is the radius of the soap bubble.
Complete step by step solution
Given that,
The soap bubble is given as negative charge.
By the formula,
The electric potential produced by the point charge can be determined by,
$V = \dfrac{{kQ}}{R}\,.......................\left( 1 \right)$
Where, $V$ is the potential developed in the soap bubble, $k$ is the constant, $Q$ is the point charge which is placed in the centre of the bubble and $R$ is the radius of the soap bubble.
In the above equation (1), the charge and the radius both are inversely proportional. If the charge is given as negative means, the charge is decreasing, so that the potential difference also decreases, if the potential difference decreases, then the radius is increased.
Hence, the option (B) is the correct answer.
Note The potential developed is directly proportional to the charge which is placed in the centre of the circle and the potential developed is inversely proportional to the radius of the circle. As the charge increases, the potential developed also increases. As the charge decreases, the potential developed also decreases, if the potential developed decreases then the radius is increased.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main