
A uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is
\[\begin{align}
& (\text{A) }\dfrac{1}{3}\left( 2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (B\text{) }\dfrac{1}{3}\left( \overset{\scriptscriptstyle\rightharpoonup}{i}-\overset{\scriptscriptstyle\rightharpoonup}{j}-\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (C\text{) }\dfrac{1}{3}\left( 2\overset{\scriptscriptstyle\rightharpoonup}{i}+\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (D\text{) }\dfrac{2}{3}\left( \overset{\scriptscriptstyle\rightharpoonup}{i}+\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
\end{align}\]
Answer
217.5k+ views
Hint: We know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\]. Now we have to calculate \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\]. From the values of \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\] we can get the vector \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now we have to substitute \[t=2\]. This will give us the tangent vector of \[f(x,y,z,t)=0\] at \[t=2\]. We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now by using this concept, we can find the uni-modular tangent vector of curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\].
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

