A uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is
\[\begin{align}
& (\text{A) }\dfrac{1}{3}\left( 2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (B\text{) }\dfrac{1}{3}\left( \overset{\scriptscriptstyle\rightharpoonup}{i}-\overset{\scriptscriptstyle\rightharpoonup}{j}-\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (C\text{) }\dfrac{1}{3}\left( 2\overset{\scriptscriptstyle\rightharpoonup}{i}+\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (D\text{) }\dfrac{2}{3}\left( \overset{\scriptscriptstyle\rightharpoonup}{i}+\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
\end{align}\]
Answer
Verified
122.7k+ views
Hint: We know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\]. Now we have to calculate \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\]. From the values of \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\] we can get the vector \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now we have to substitute \[t=2\]. This will give us the tangent vector of \[f(x,y,z,t)=0\] at \[t=2\]. We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now by using this concept, we can find the uni-modular tangent vector of curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\].
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Degree of Dissociation and Its Formula With Solved Example for JEE