
A uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is
\[\begin{align}
& (\text{A) }\dfrac{1}{3}\left( 2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (B\text{) }\dfrac{1}{3}\left( \overset{\scriptscriptstyle\rightharpoonup}{i}-\overset{\scriptscriptstyle\rightharpoonup}{j}-\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (C\text{) }\dfrac{1}{3}\left( 2\overset{\scriptscriptstyle\rightharpoonup}{i}+\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (D\text{) }\dfrac{2}{3}\left( \overset{\scriptscriptstyle\rightharpoonup}{i}+\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
\end{align}\]
Answer
147k+ views
Hint: We know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\]. Now we have to calculate \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\]. From the values of \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\] we can get the vector \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now we have to substitute \[t=2\]. This will give us the tangent vector of \[f(x,y,z,t)=0\] at \[t=2\]. We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now by using this concept, we can find the uni-modular tangent vector of curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\].
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Electrical Field of Charged Spherical Shell - JEE
