
All diodes are ideal. The current flowing in $2\Omega $resistor connected between the diodes ${D_1}$ and ${D_2}$is then:
A) 1A
B) 2A
C) 3A
D) Zero
Answer
132.9k+ views
Hint: A diode is a device which allows current to pass in only one direction i.e. it will allow the current to pass in the forward bias only. The resistance for the diode in forward bias is zero and in reverse bias is infinity.
Complete step by step answer:
Here in the second line the diode D4 is reverse bias so there will be no current flowing in it.

The resistance is in series with each other so, the equivalent resistance will be:
${R_{eq}} = 1\Omega + 2\Omega + 1\Omega $;
The equivalent resistance would be:
$ \Rightarrow {R_{eq}} = 4\Omega $;
Now the resistors $4\Omega $ and $4\Omega $ are in parallel with each other. So, the equivalent resistance is:
${R_{eq1}} = \dfrac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}$ ;
Put in the given values of resistance in the above equation:
$ \Rightarrow {R_{eq1}} = \dfrac{{4 \times 4}}{{4 + 4}}$;
$ \Rightarrow {R_{eq1}} = \dfrac{{16}}{8} = 2\Omega $;
The resistance$2\Omega $and $3\Omega $are in series with each other:
${R_{eq}} = 2\Omega + 3\Omega $;
\[ \Rightarrow {R_{eq}} = 5\Omega \];
Now we know the relation between the current, Voltage and Resistor respectively:
${I_{eq}} = \dfrac{V}{{{R_{eq}}}}$ ;
Put in the given values in the above equation and solve:
$ \Rightarrow {I_{eq}} = \dfrac{{10}}{5}$;
The equivalent current is:
$ \Rightarrow {I_{eq}} = 2A$;
Current in the $2\Omega $ resistor would be 1A.
Option B is correct. The current flowing in $2\Omega $resistor connected between the diodes ${D_1}$ and ${D_2}$is 1A.
Note: Here we need to solve the circuit. First find the equivalent resistance in row 1 which is in series. Then resistance in first row/wire would be in parallel with the resistance in second row/wire. After that the two resistances i.e. $2\Omega $ and $3\Omega $ would be in series with each other. Apply the formula V=IR and solve.
Complete step by step answer:
Here in the second line the diode D4 is reverse bias so there will be no current flowing in it.

The resistance is in series with each other so, the equivalent resistance will be:
${R_{eq}} = 1\Omega + 2\Omega + 1\Omega $;
The equivalent resistance would be:
$ \Rightarrow {R_{eq}} = 4\Omega $;
Now the resistors $4\Omega $ and $4\Omega $ are in parallel with each other. So, the equivalent resistance is:
${R_{eq1}} = \dfrac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}$ ;
Put in the given values of resistance in the above equation:
$ \Rightarrow {R_{eq1}} = \dfrac{{4 \times 4}}{{4 + 4}}$;
$ \Rightarrow {R_{eq1}} = \dfrac{{16}}{8} = 2\Omega $;
The resistance$2\Omega $and $3\Omega $are in series with each other:
${R_{eq}} = 2\Omega + 3\Omega $;
\[ \Rightarrow {R_{eq}} = 5\Omega \];
Now we know the relation between the current, Voltage and Resistor respectively:
${I_{eq}} = \dfrac{V}{{{R_{eq}}}}$ ;
Put in the given values in the above equation and solve:
$ \Rightarrow {I_{eq}} = \dfrac{{10}}{5}$;
The equivalent current is:
$ \Rightarrow {I_{eq}} = 2A$;
Current in the $2\Omega $ resistor would be 1A.
Option B is correct. The current flowing in $2\Omega $resistor connected between the diodes ${D_1}$ and ${D_2}$is 1A.
Note: Here we need to solve the circuit. First find the equivalent resistance in row 1 which is in series. Then resistance in first row/wire would be in parallel with the resistance in second row/wire. After that the two resistances i.e. $2\Omega $ and $3\Omega $ would be in series with each other. Apply the formula V=IR and solve.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
