Answer
Verified
99.9k+ views
.Hint. In this question, we have an electric heater which consumes power, and the voltage is applied to it. We have to find the current flowing through it. So by using the formula of power, $P = V/I$, we will be able to find the current.
.Formula used.
Power,
$P = \dfrac{V}{I}$
Here,
$P$, will be the power
$V$, will be the voltages
$I$, will be the current.
.Complete Step By Step Solution. First of all we will convert the power given to the watt.
So,
Power$ = 1.1kwh = 1.1 \times 1000$
Then the final power will be
$P = 1100w$
We know that,
$P = \dfrac{V}{I}$
From there the current will be
$ \Rightarrow I = P/V$
Now putting the values, we get
$ \Rightarrow I = \dfrac{{1100}}{{220}}$
$ \Rightarrow I = \dfrac{{10}}{2}$
And on solving the above, we get
$ \Rightarrow 5A$
Therefore, $5A$ the current will be following through it.
Hence option $D$will be the correct one.
Additional information: Electric force is generally provided to organizations and homes (as homegrown mains power) by the electric force industry through an electric force network. The electric force is normally sold by the kilowatt-hour which is the result of the force in kilowatts duplicated by running time in hours. Electric utilities measure power utilizing a power meter, which keeps a running complete of the electric energy conveyed to a client.
.Note. Electrical Power is the rate at which electrical energy is used. For example, consider 1 Joule of electrical energy. If one uses this in one second then the power is one Watt. If one uses this same energy in a millisecond the power is one $kW$ and if used in a microsecond then the power is 1$mW$. So the same electrical energy yields different electrical power depending upon the rate at which it is used.
This definition holds for all forms of power and is the basis of Newton’s first and second laws. No power, no change in energy, no change in state or potential.
.Formula used.
Power,
$P = \dfrac{V}{I}$
Here,
$P$, will be the power
$V$, will be the voltages
$I$, will be the current.
.Complete Step By Step Solution. First of all we will convert the power given to the watt.
So,
Power$ = 1.1kwh = 1.1 \times 1000$
Then the final power will be
$P = 1100w$
We know that,
$P = \dfrac{V}{I}$
From there the current will be
$ \Rightarrow I = P/V$
Now putting the values, we get
$ \Rightarrow I = \dfrac{{1100}}{{220}}$
$ \Rightarrow I = \dfrac{{10}}{2}$
And on solving the above, we get
$ \Rightarrow 5A$
Therefore, $5A$ the current will be following through it.
Hence option $D$will be the correct one.
Additional information: Electric force is generally provided to organizations and homes (as homegrown mains power) by the electric force industry through an electric force network. The electric force is normally sold by the kilowatt-hour which is the result of the force in kilowatts duplicated by running time in hours. Electric utilities measure power utilizing a power meter, which keeps a running complete of the electric energy conveyed to a client.
.Note. Electrical Power is the rate at which electrical energy is used. For example, consider 1 Joule of electrical energy. If one uses this in one second then the power is one Watt. If one uses this same energy in a millisecond the power is one $kW$ and if used in a microsecond then the power is 1$mW$. So the same electrical energy yields different electrical power depending upon the rate at which it is used.
This definition holds for all forms of power and is the basis of Newton’s first and second laws. No power, no change in energy, no change in state or potential.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main