An explosion takes place when conc. ${{\text{H}}_2}{\text{S}}{{\text{O}}_4}$ is added to ${\text{KMn}}{{\text{O}}_4}$ which of the following is formed:
A)${\text{M}}{{\text{n}}_2}{{\text{O}}_7}$
B)${\text{Mn}}{{\text{O}}_{\text{2}}}$
C)${\text{MnS}}{{\text{O}}_{\text{4}}}$
D)${\text{M}}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}$
Answer
Verified
122.7k+ views
Hint:To solve this question, it is required to have knowledge about the chemical reaction of potassium permanganate in an acidic medium. In ${\text{KMn}}{{\text{O}}_4}$ , the manganese ion is present in its highest oxidation state, i.e. $ + 7$. Reaction of ${\text{KMn}}{{\text{O}}_4}$ with acids reduces the manganese ion to a lower oxidation state which differs according to the pH of the solution. The reaction of sulphuric acid with potassium permanganate is the only reaction in which the oxidation number of manganese does not change.
Complete step by step answer:
As we know, the Mn containing products from redox reactions depends on the pH. Acidic solutions of permanganate are reduced to the faintly pink ${\text{M}}{{\text{n}}^{2 + }}$ ion and water. In neutral solutions, permanganate is reduced by only three electrons to give ${\text{Mn}}{{\text{O}}_2}$ . The manganese ion is present in $ + 4$ oxidation state as ${\text{M}}{{\text{n}}^{4 + }}$ . In an alkaline solution, ${\text{KMn}}{{\text{O}}_4}$ reduces into a green ${{\text{K}}_2}{\text{Mn}}{{\text{O}}_4}$ .
On reaction with concentrated ${{\text{H}}_2}{\text{S}}{{\text{O}}_4}$ , ${\text{KMn}}{{\text{O}}_4}$ gives ${\text{M}}{{\text{n}}_2}{{\text{O}}_7}$ in which manganese ion is present in the oxidation state of $ + 7$. The compound is unstable and in the presence of sunlight can also be explosive. The vapour can ignite paper dipped with alcohol. It is a dark green compound and is also highly volatile.
$\therefore $ The correct option is option A, i.e. ${\text{M}}{{\text{n}}_2}{{\text{O}}_7}$
Note: Potassium permanganate reacts with most compounds and reduces itself while oxidizing the other compound. But only in the case of sulphuric acid, potassium permanganate does not reduce itself and remains the same. It is an acidic anhydride of permanganic acid. The reaction goes as follows:
$2{\text{KMn}}{{\text{O}}_4} + 2{{\text{H}}_2}{\text{S}}{{\text{O}}_4} \to {\text{M}}{{\text{n}}_2}{{\text{O}}_7} + {{\text{H}}_2}{\text{O + 2KHS}}{{\text{O}}_4}$
Complete step by step answer:
As we know, the Mn containing products from redox reactions depends on the pH. Acidic solutions of permanganate are reduced to the faintly pink ${\text{M}}{{\text{n}}^{2 + }}$ ion and water. In neutral solutions, permanganate is reduced by only three electrons to give ${\text{Mn}}{{\text{O}}_2}$ . The manganese ion is present in $ + 4$ oxidation state as ${\text{M}}{{\text{n}}^{4 + }}$ . In an alkaline solution, ${\text{KMn}}{{\text{O}}_4}$ reduces into a green ${{\text{K}}_2}{\text{Mn}}{{\text{O}}_4}$ .
On reaction with concentrated ${{\text{H}}_2}{\text{S}}{{\text{O}}_4}$ , ${\text{KMn}}{{\text{O}}_4}$ gives ${\text{M}}{{\text{n}}_2}{{\text{O}}_7}$ in which manganese ion is present in the oxidation state of $ + 7$. The compound is unstable and in the presence of sunlight can also be explosive. The vapour can ignite paper dipped with alcohol. It is a dark green compound and is also highly volatile.
$\therefore $ The correct option is option A, i.e. ${\text{M}}{{\text{n}}_2}{{\text{O}}_7}$
Note: Potassium permanganate reacts with most compounds and reduces itself while oxidizing the other compound. But only in the case of sulphuric acid, potassium permanganate does not reduce itself and remains the same. It is an acidic anhydride of permanganic acid. The reaction goes as follows:
$2{\text{KMn}}{{\text{O}}_4} + 2{{\text{H}}_2}{\text{S}}{{\text{O}}_4} \to {\text{M}}{{\text{n}}_2}{{\text{O}}_7} + {{\text{H}}_2}{\text{O + 2KHS}}{{\text{O}}_4}$
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Online Mock Test for Class 12
Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions
NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids