
An inductance coil of ${{1H}}$ and a condenser of capacity ${{1pF}}$ produce resonance. The resonant frequency will be:
A) $\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{\pi }}}{{Hz}}$
B) ${{27\pi \times 1}}{{{6}}^{{6}}}{{Hz}}$
C) $\dfrac{{{{2\pi }}}}{{{{1}}{{{0}}^{{6}}}}}{{Hz}}$
D) $\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{Hz}}$
Answer
233.1k+ views
Hint: We know that the formula of resonant frequency, by substituting the values, we can solve the above question. Electrical resonance occurs in an AC circuit when the two reactances which are opposite and equal cancel each other and the point on the graph at which this happens is where the two reactance curves cross each other.
Formula used:
F(resonant frequency) = $\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$
Where L is inductance & C is capacitance
& ${{1}}{{pF = 1}}{{{0}}^{{{ - 12}}}}{{Farad}}$
Complete step by step answer:
Given that, the inductance of a coil is ${{1}}{{{H}}_{{q}}}$ and the capacity of a condenser is equal to ${{C = 1pF}}$ , now converting the capacitance in farad we get
${{C = 1pF}}{{ = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$ So, ${{C = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$
Now,
Putting the value of L&C in formula ${{f = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$ we get
${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1 \times 1}}{{{0}}^{{{ - 12}}}}} }}$
$ \Rightarrow {{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1}}{{{0}}^{{{ - 12}}}}} }}$
$\therefore {{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$
So, the correct option is (D) i.e. ${{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$.
Note: Resonance is an important concept in oscillatory motion. The resonant frequency is the characteristic frequency of a body or a system that reaches the maximum degree of oscillations.
In an electrical system, the resonant frequency is defined as the frequency at which the transfer function reaches its maximum value. This for a given input, the maximum output can be obtained. It has been proud that the resonance is obtained when the capacitive impedance and the inductive impedance values are equal. In this article, we will discuss the resonant frequency formula with examples. The resonant circuits are used to create a particular frequency or to select a particular frequency form a complex circuit. So, the resonant frequency ${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}.$
Formula used:
F(resonant frequency) = $\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$
Where L is inductance & C is capacitance
& ${{1}}{{pF = 1}}{{{0}}^{{{ - 12}}}}{{Farad}}$
Complete step by step answer:
Given that, the inductance of a coil is ${{1}}{{{H}}_{{q}}}$ and the capacity of a condenser is equal to ${{C = 1pF}}$ , now converting the capacitance in farad we get
${{C = 1pF}}{{ = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$ So, ${{C = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$
Now,
Putting the value of L&C in formula ${{f = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$ we get
${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1 \times 1}}{{{0}}^{{{ - 12}}}}} }}$
$ \Rightarrow {{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1}}{{{0}}^{{{ - 12}}}}} }}$
$\therefore {{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$
So, the correct option is (D) i.e. ${{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$.
Note: Resonance is an important concept in oscillatory motion. The resonant frequency is the characteristic frequency of a body or a system that reaches the maximum degree of oscillations.
In an electrical system, the resonant frequency is defined as the frequency at which the transfer function reaches its maximum value. This for a given input, the maximum output can be obtained. It has been proud that the resonance is obtained when the capacitive impedance and the inductive impedance values are equal. In this article, we will discuss the resonant frequency formula with examples. The resonant circuits are used to create a particular frequency or to select a particular frequency form a complex circuit. So, the resonant frequency ${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}.$
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Uniform Acceleration in Physics

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

