Answer
Verified
112.8k+ views
Hint: The pentavalent material has excess electrons in it. When they are doped with another intrinsic semiconductor having some electron density then the total order of the electron density increases is the difference of their individual electron density. These free electrons cause a flow of electric current.
Complete step by step answer:
It is given that free electron density in intrinsic semiconductor is $1018/m^3$ and the electron density of pentavalent impurity is $1024/m^3$. So the free electrons are donated and thus the density order of electrons will be $$(24 - 18) = 6$$. There are two types of semiconductors namely intrinsic and extrinsic. Intrinsic semiconductors are the pure semiconductors which do not have impurities in it whereas the extrinsic are those semiconductors which contain some amount of impurities to make it more conductive. Also there are two types of dopants namely trivalent and pentavalent.
Trivalent are the electron deficient substances whereas the pentavalent dopants have excess electrons. So when pentavalents are doped in intrinsic semiconductors then the order of free electrons is the difference of their individual electron density. These free electron density gives the amount of current it can pass through it. The dopant value increases the conductivity in an intrinsic semiconductor. A small amount of impurity can increase a large amount of free electrons.
Note: According to the question we have to calculate the increase in free electron density. So the total increase in free electrons is the difference in their individual free electron density. If we have to calculate the total free electron density then it would be an order of 30.
Complete step by step answer:
It is given that free electron density in intrinsic semiconductor is $1018/m^3$ and the electron density of pentavalent impurity is $1024/m^3$. So the free electrons are donated and thus the density order of electrons will be $$(24 - 18) = 6$$. There are two types of semiconductors namely intrinsic and extrinsic. Intrinsic semiconductors are the pure semiconductors which do not have impurities in it whereas the extrinsic are those semiconductors which contain some amount of impurities to make it more conductive. Also there are two types of dopants namely trivalent and pentavalent.
Trivalent are the electron deficient substances whereas the pentavalent dopants have excess electrons. So when pentavalents are doped in intrinsic semiconductors then the order of free electrons is the difference of their individual electron density. These free electron density gives the amount of current it can pass through it. The dopant value increases the conductivity in an intrinsic semiconductor. A small amount of impurity can increase a large amount of free electrons.
Note: According to the question we have to calculate the increase in free electron density. So the total increase in free electrons is the difference in their individual free electron density. If we have to calculate the total free electron density then it would be an order of 30.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking