Answer
Verified
395.7k+ views
Hint: To solve this question, look at the parameters given to us in the question. Since, pressure (P), volume (V) and real gas constant (R) remain constant, relate the number of moles and temperature by using the ideal gas equation.
Complete step by step answer:
According to the question, there is an open vessel with a temperature equal to 27 deg Celsius.
27\[{}^\circ C\] = 273.15 + 27 = 300K.
Also, two-fifth of air escapes. Therefore, we can say that there is a change in moles of the gas.
So, let the initial moles in air be ‘n1’ and the number of moles after two fifths of gas escaped be ‘n2’.
Let n1 = 1 mole
So, n2 = n1 – (2/5) = 1 – (2/5) = 3/5 moles.
According to the question we can say that the volume remains constant.
Ideal gas equation relates PV = nRT.
Since, pressure (P), volume (V) and real gas constant (R) are constant, we can relate the number of moles and temperature as –
nT = constant
\[{{n}_{1}}{{T}_{1}}={{n}_{2}}{{T}_{2}}\]= constant
Now, putting the values of moles and temperature we get –
\[\begin{align}
& (1)(300)=\left( \dfrac{3}{5} \right){{T}_{2}} \\
& {{T}_{2}}=\dfrac{\text{300x}5}{3}K \\
& {{T}_{2}}=500K \\
\end{align}\]
Therefore, the answer is – option (d). The temperature at which the vessel has been heated is 500K.
Additional Information:
1 mole of any gas at STP occupies a volume of 22.4 L.
Note: Ideal gas equation is the equation of state of an ideal gas (hypothetical). It is an approximation of the behaviour of gases under ideal conditions.It is a combination of empirical laws like Boyle’s law, Charles law, Gay-Lussac’s law and Avogadro’s law.
Complete step by step answer:
According to the question, there is an open vessel with a temperature equal to 27 deg Celsius.
27\[{}^\circ C\] = 273.15 + 27 = 300K.
Also, two-fifth of air escapes. Therefore, we can say that there is a change in moles of the gas.
So, let the initial moles in air be ‘n1’ and the number of moles after two fifths of gas escaped be ‘n2’.
Let n1 = 1 mole
So, n2 = n1 – (2/5) = 1 – (2/5) = 3/5 moles.
According to the question we can say that the volume remains constant.
Ideal gas equation relates PV = nRT.
Since, pressure (P), volume (V) and real gas constant (R) are constant, we can relate the number of moles and temperature as –
nT = constant
\[{{n}_{1}}{{T}_{1}}={{n}_{2}}{{T}_{2}}\]= constant
Now, putting the values of moles and temperature we get –
\[\begin{align}
& (1)(300)=\left( \dfrac{3}{5} \right){{T}_{2}} \\
& {{T}_{2}}=\dfrac{\text{300x}5}{3}K \\
& {{T}_{2}}=500K \\
\end{align}\]
Therefore, the answer is – option (d). The temperature at which the vessel has been heated is 500K.
Additional Information:
1 mole of any gas at STP occupies a volume of 22.4 L.
Note: Ideal gas equation is the equation of state of an ideal gas (hypothetical). It is an approximation of the behaviour of gases under ideal conditions.It is a combination of empirical laws like Boyle’s law, Charles law, Gay-Lussac’s law and Avogadro’s law.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A physical quantity which has a direction A Must be class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main