
At room temperature, copper has free electron density of $8.4 \times {10^{28}}{m^{ - 3}}$. The electron drift velocity in a copper conductor of cross-sectional area of \[{10^{ - 6}}{m^2}\] and carrying a current of 5.4 A, will be:
A) $4m{s^{ - 1}}$
B) $0.4m{s^{ - 1}}$
C) $4cm{s^{ - 1}}$
D) $0.4mm{s^{ - 1}}$
Answer
225k+ views
Hint: When some potential difference is applied across some metal, an electric field is created within the metal piece. Due to the presence of this electric field, the free electrons of the metals start moving from lower to higher potential and a current flow is created in the opposite direction. The average uniform velocity of the free electrons is known as the drift velocity of the electron for that metal.
Formula Used:
Dependence of produced current on the cross sectional area, drift velocity and number density of electron is given by:
$i = nAe{v_d}$ (1)
Where,
i is the current through the conductor,
n is the free electron density within the conductor,
e is electron charge magnitude, $e = 1.6 \times {10^{ - 19}}C$.
${v_d}$ is the drift velocity of an electron.
Complete step by step answer:
Given:
1. Free electron density of copper is $n = 8.4 \times {10^{28}}{m^{ - 3}}$.
2. Cross-sectional area of copper conductor is $A = {10^{ - 6}}{m^2}$.
3. Current through the conductor is i=5.4A.
To find: The drift velocity of the electron, ${v_d}$.
Step 1
First, rewrite the eq.(1) to find an expression of ${v_d}$in terms of other variables:
$
i = nAe{v_d} \\
\therefore {v_d} = \dfrac{i}{{nAe}} \\
$ (2)
Step 2
Now, substitute the values of i, n, A, e in eq.(2) to get the value of ${v_d}$ as:
$
{v_d} = \dfrac{{5.4A}}{{8.4 \times {{10}^{28}}{m^{ - 3}} \times {{10}^{ - 6}}{m^2} \times 1.6 \times {{10}^{ - 19}}C}} \\
= 4 \times {10^{ - 4}}m{s^{ - 1}} = 0.4mm{s^{ - 1}} \\
$
So, the magnitude of the drift velocity is $0.4mm{s^{ - 1}}$.
Correct answer:
The electron drift velocity in the copper conductor will be (d) $0.4mm{s^{ - 1}}$.
Note: Many students have misconceptions about the direction of drift velocity of the electrons. Many think that the current direction is the same as the direction of drift velocity. But that’s wrong. Since, electrons are negatively charged particles so they always move from lower potential to higher potential but the direction of current is assumed to be from higher to lower potential. Hence, their directions are completely opposite.
Formula Used:
Dependence of produced current on the cross sectional area, drift velocity and number density of electron is given by:
$i = nAe{v_d}$ (1)
Where,
i is the current through the conductor,
n is the free electron density within the conductor,
e is electron charge magnitude, $e = 1.6 \times {10^{ - 19}}C$.
${v_d}$ is the drift velocity of an electron.
Complete step by step answer:
Given:
1. Free electron density of copper is $n = 8.4 \times {10^{28}}{m^{ - 3}}$.
2. Cross-sectional area of copper conductor is $A = {10^{ - 6}}{m^2}$.
3. Current through the conductor is i=5.4A.
To find: The drift velocity of the electron, ${v_d}$.
Step 1
First, rewrite the eq.(1) to find an expression of ${v_d}$in terms of other variables:
$
i = nAe{v_d} \\
\therefore {v_d} = \dfrac{i}{{nAe}} \\
$ (2)
Step 2
Now, substitute the values of i, n, A, e in eq.(2) to get the value of ${v_d}$ as:
$
{v_d} = \dfrac{{5.4A}}{{8.4 \times {{10}^{28}}{m^{ - 3}} \times {{10}^{ - 6}}{m^2} \times 1.6 \times {{10}^{ - 19}}C}} \\
= 4 \times {10^{ - 4}}m{s^{ - 1}} = 0.4mm{s^{ - 1}} \\
$
So, the magnitude of the drift velocity is $0.4mm{s^{ - 1}}$.
Correct answer:
The electron drift velocity in the copper conductor will be (d) $0.4mm{s^{ - 1}}$.
Note: Many students have misconceptions about the direction of drift velocity of the electrons. Many think that the current direction is the same as the direction of drift velocity. But that’s wrong. Since, electrons are negatively charged particles so they always move from lower potential to higher potential but the direction of current is assumed to be from higher to lower potential. Hence, their directions are completely opposite.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

