
Calculate the frequency, energy and wavelength of the radiation corresponding to the spectral line of lowest frequency in the Lyman series in the spectra of the hydrogen atom. Also, calculate the energy of the corresponding line in the spectra of $L{i^{ + 2}}$.
Answer
233.1k+ views
Hint: Lyman series is the one where the electron comes to shell number 1 (${n_1}$ = 1) and lowest frequency is obtained when the wavelength is the longest which means the transition should be shortest.
Formulas used:
-Wavelength:
$\dfrac{1}{\lambda } = R{z^2}\left[ {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right]$
-Frequency: $\nu = \dfrac{c}{\lambda }$
-Energy:$E = h\nu = h\dfrac{c}{\lambda }$
Where,
λ = wavelength;
R = Rydberg’s Constant = $1.0967 \times {10^7}$;
$\nu $ = frequency;
c = speed of light;
E = energy.
Complete step by step solution:
-The spectral line of lowest frequency (highest wavelength) in the Lyman series in the spectra of Hydrogen atoms has an electronic transition from shell 2 to shell 1.
This means that ${n_1}$ = 1 and ${n_2}$ = 2. Also R = $1.0967 \times {10^7}$.
-Now we need to calculate the frequency, energy and wavelength of the radiation emitted when the transition is from 2 to 1 (${n_1}$ = 1 and ${n_2}$ = 2) in an H atom.
-Let us start with this wavelength. It is calculated using the formula:
$\dfrac{1}{\lambda } = R\left[ {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right]$
= $1.0967 \times {10^7}\left[ {\dfrac{1}{1} - \dfrac{1}{{{2^2}}}} \right]$
= $1.096 \times {10^7}\left[ {\dfrac{3}{4}} \right]$
$\lambda = \dfrac{4}{{1.096 \times {{10}^7} \times 3}}$
= $\dfrac{4}{{3.288 \times {{10}^7}}}$
= $1.2165 \times {10^{ - 7}}$ m
= 121.65 nm
So, the wavelength associated with the lowest frequency of the H atom in the Lyman series is 121.65 nm.
-We will now find out the lowest frequency using the formula:
$\nu = \dfrac{c}{\lambda }$ , where c is speed of light = $3 \times {10^8}m/\sec $
= $\dfrac{{3 \times {{10}^8}}}{{1.2165 \times {{10}^{ - 7}}}}$
= $2.466 \times {10^{15}}$ ${\sec ^{ - 1}}$
So, the lowest frequency of H atom is $2.466 \times {10^{15}}$ ${\sec ^{ - 1}}$.
-Now let us calculate the energy for this lowest frequency of H atoms. It is done using the formula:
$E = h\nu = h\dfrac{c}{\lambda }$ , where h = $6.626 \times {10^{ - 34}}$
= $(6.626 \times {10^{ - 34}})(2.466 \times {10^{15}})$
= $16.3397 \times {10^{ - 19}}$ J
So, the energy of this H atom is $16.3397 \times {10^{ - 19}}$ J.
So, the wavelength, frequency and energy associated with H atom during transition from 2 to 1 (of lowest frequency) are: 121.65 nm, $2.466 \times {10^{15}}$ ${\sec ^{ - 1}}$ and $16.3397 \times {10^{ - 19}}$ J.
-Now we will calculate the energy of the corresponding line or the radiation emitted when transition is from 2 to 1 (${n_1}$ = 1 and ${n_2}$ = 2) in $L{i^{ + 2}}$ atom.
Here z = 2 and R = $1.0967 \times {10^7}$
We will start with wavelength. The formula used for calculating wavelength is:
$\dfrac{1}{\lambda } = R{z^2}\left[ {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right]$
= $1.0967 \times {10^7} \times {(3)^2}\left[ {\dfrac{1}{1} - \dfrac{1}{{{2^2}}}} \right]$
= $1.096 \times {10^7} \times 9\left[ {\dfrac{3}{4}} \right]$
$\lambda = \dfrac{4}{{1.096 \times {{10}^7} \times 9 \times 3}}$
= $\dfrac{4}{{29.592 \times {{10}^7}}}$
= $0.135 \times {10^{ - 7}}$ m
= 13.5 nm
So, the wavelength of $L{i^{ + 2}}$ atom is 13.5 nm.
Finally we can find out the energy of $L{i^{ + 2}}$ atom. The formula used to calculate energy is:
$E = h\nu = h\dfrac{c}{\lambda }$ , where h = $6.626 \times {10^{ - 34}}$
= $6.626 \times {10^{ - 34}} \times \dfrac{{3 \times {{10}^8}}}{{0.135 \times {{10}^{ - 7}}}}$
= $147.244 \times {10^{ - 19}}$J
So, the energy of $L{i^{ + 2}}$ atom is $147.244 \times {10^{ - 19}}$ J and the energy associated with $L{i^{ + 2}}$ atom during transition from 2 to 1 is $147.244 \times {10^{ - 19}}$ J.
Note: The emission spectrum of hydrogen consists of different spectral series. The spectral lines are formed due to transition of electrons between two energy levels in an atom. The spectral series can be: Lyman (${n_1}$ = 1), Balmer (${n_1}$ = 2), Paschen (${n_1}$ = 3), Bracket (${n_1}$ = 4), P-fund (${n_1}$ = 5) and so on.
Formulas used:
-Wavelength:
$\dfrac{1}{\lambda } = R{z^2}\left[ {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right]$
-Frequency: $\nu = \dfrac{c}{\lambda }$
-Energy:$E = h\nu = h\dfrac{c}{\lambda }$
Where,
λ = wavelength;
R = Rydberg’s Constant = $1.0967 \times {10^7}$;
$\nu $ = frequency;
c = speed of light;
E = energy.
Complete step by step solution:
-The spectral line of lowest frequency (highest wavelength) in the Lyman series in the spectra of Hydrogen atoms has an electronic transition from shell 2 to shell 1.
This means that ${n_1}$ = 1 and ${n_2}$ = 2. Also R = $1.0967 \times {10^7}$.
-Now we need to calculate the frequency, energy and wavelength of the radiation emitted when the transition is from 2 to 1 (${n_1}$ = 1 and ${n_2}$ = 2) in an H atom.
-Let us start with this wavelength. It is calculated using the formula:
$\dfrac{1}{\lambda } = R\left[ {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right]$
= $1.0967 \times {10^7}\left[ {\dfrac{1}{1} - \dfrac{1}{{{2^2}}}} \right]$
= $1.096 \times {10^7}\left[ {\dfrac{3}{4}} \right]$
$\lambda = \dfrac{4}{{1.096 \times {{10}^7} \times 3}}$
= $\dfrac{4}{{3.288 \times {{10}^7}}}$
= $1.2165 \times {10^{ - 7}}$ m
= 121.65 nm
So, the wavelength associated with the lowest frequency of the H atom in the Lyman series is 121.65 nm.
-We will now find out the lowest frequency using the formula:
$\nu = \dfrac{c}{\lambda }$ , where c is speed of light = $3 \times {10^8}m/\sec $
= $\dfrac{{3 \times {{10}^8}}}{{1.2165 \times {{10}^{ - 7}}}}$
= $2.466 \times {10^{15}}$ ${\sec ^{ - 1}}$
So, the lowest frequency of H atom is $2.466 \times {10^{15}}$ ${\sec ^{ - 1}}$.
-Now let us calculate the energy for this lowest frequency of H atoms. It is done using the formula:
$E = h\nu = h\dfrac{c}{\lambda }$ , where h = $6.626 \times {10^{ - 34}}$
= $(6.626 \times {10^{ - 34}})(2.466 \times {10^{15}})$
= $16.3397 \times {10^{ - 19}}$ J
So, the energy of this H atom is $16.3397 \times {10^{ - 19}}$ J.
So, the wavelength, frequency and energy associated with H atom during transition from 2 to 1 (of lowest frequency) are: 121.65 nm, $2.466 \times {10^{15}}$ ${\sec ^{ - 1}}$ and $16.3397 \times {10^{ - 19}}$ J.
-Now we will calculate the energy of the corresponding line or the radiation emitted when transition is from 2 to 1 (${n_1}$ = 1 and ${n_2}$ = 2) in $L{i^{ + 2}}$ atom.
Here z = 2 and R = $1.0967 \times {10^7}$
We will start with wavelength. The formula used for calculating wavelength is:
$\dfrac{1}{\lambda } = R{z^2}\left[ {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right]$
= $1.0967 \times {10^7} \times {(3)^2}\left[ {\dfrac{1}{1} - \dfrac{1}{{{2^2}}}} \right]$
= $1.096 \times {10^7} \times 9\left[ {\dfrac{3}{4}} \right]$
$\lambda = \dfrac{4}{{1.096 \times {{10}^7} \times 9 \times 3}}$
= $\dfrac{4}{{29.592 \times {{10}^7}}}$
= $0.135 \times {10^{ - 7}}$ m
= 13.5 nm
So, the wavelength of $L{i^{ + 2}}$ atom is 13.5 nm.
Finally we can find out the energy of $L{i^{ + 2}}$ atom. The formula used to calculate energy is:
$E = h\nu = h\dfrac{c}{\lambda }$ , where h = $6.626 \times {10^{ - 34}}$
= $6.626 \times {10^{ - 34}} \times \dfrac{{3 \times {{10}^8}}}{{0.135 \times {{10}^{ - 7}}}}$
= $147.244 \times {10^{ - 19}}$J
So, the energy of $L{i^{ + 2}}$ atom is $147.244 \times {10^{ - 19}}$ J and the energy associated with $L{i^{ + 2}}$ atom during transition from 2 to 1 is $147.244 \times {10^{ - 19}}$ J.
Note: The emission spectrum of hydrogen consists of different spectral series. The spectral lines are formed due to transition of electrons between two energy levels in an atom. The spectral series can be: Lyman (${n_1}$ = 1), Balmer (${n_1}$ = 2), Paschen (${n_1}$ = 3), Bracket (${n_1}$ = 4), P-fund (${n_1}$ = 5) and so on.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

Other Pages
NCERT Solutions For Class 11 Chemistry in Hindi Chapter 8 Redox Reactions (2025-26)

An ideal gas is at pressure P and temperature T in class 11 chemistry JEE_Main

In Carius method of estimation of halogens 015g of class 11 chemistry JEE_Main

Understanding Collisions: Types and Examples for Students

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 1 Some Basic Concepts of Chemistry (2025-26)

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

