
What is the contrapositive of the statement “If two triangles are identical, then these are similar.”?
A. If two triangles are not similar, then these are not identical.
B. If two triangles are not identical, then these are not similar.
C. If two triangles are not identical, then these are similar.
D. If two triangles are not similar, then these are identical.
Answer
216k+ views
Hint: Use the definition of the contrapositive concept of mathematical logic and convert the given statement into the contrapositive statement.
Formula used:
The contrapositive of a conditional statement, interchange the original hypothesis and the conclusion of the statement.
The negation of a statement is the opposite of the original statement.
The negation is represented by a symbol: \[\sim \]
Complete step by step solution:
The given statement is “If two triangles are identical, then these are similar.”
Let’s consider,
\[p:\] two triangles are identical
\[q:\] two triangles are similar
So, the symbolic representation of the given statement is: \[p \to q\]
Now apply the definition of the contrapositive concept of mathematical logic.
Then the contrapositive representation is: \[\sim q \to \sim p\]
The negation statements of the above statements are:
\[\sim p :\] two triangles are not similar
\[\sim q :\] two triangles are not identical
Therefore, the word representation of the contrapositive statement is,
\[\sim q \to \sim p\]: If two triangles are not similar, then these are not identical.
Hence the correct option is A.
Note: Students often get confused and consider contrapositive as the negation.
A contrapositive statement is a negation of terms of a converse statement.
Statement: \[a \to b\]
Contrapositive statement: \[\sim b \to \sim a\]
Formula used:
The contrapositive of a conditional statement, interchange the original hypothesis and the conclusion of the statement.
The negation of a statement is the opposite of the original statement.
The negation is represented by a symbol: \[\sim \]
Complete step by step solution:
The given statement is “If two triangles are identical, then these are similar.”
Let’s consider,
\[p:\] two triangles are identical
\[q:\] two triangles are similar
So, the symbolic representation of the given statement is: \[p \to q\]
Now apply the definition of the contrapositive concept of mathematical logic.
Then the contrapositive representation is: \[\sim q \to \sim p\]
The negation statements of the above statements are:
\[\sim p :\] two triangles are not similar
\[\sim q :\] two triangles are not identical
Therefore, the word representation of the contrapositive statement is,
\[\sim q \to \sim p\]: If two triangles are not similar, then these are not identical.
Hence the correct option is A.
Note: Students often get confused and consider contrapositive as the negation.
A contrapositive statement is a negation of terms of a converse statement.
Statement: \[a \to b\]
Contrapositive statement: \[\sim b \to \sim a\]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

