Answer
Verified
97.8k+ views
Hint: Newton's law of gravitation states that the force between two unknown masses is directly proportional to the force acting between them. The force is inversely proportional to the square of distance between the masses. Also these masses experience acceleration due to gravity as well.
Complete step by step solution:
The acceleration of a body in free fall due to the massive body's gravity is g. The attraction force between two objects with a unit mass divided in some portion of this universe by a unit distance is G.
The gravity of any large body is g. The inertia on an object. A universal gravitational constant denoting G is the attraction force between any two masses divided by unit size. There is no proportional relationship between G and g. That implies that they are distinct bodies.
Let’s consider two bodies of masses $M$ and $m$ kept at distance $r$ from each other, now, according to Newton’s law of gravitation, we know that,
$F = \dfrac{{GMm}}{{{r^2}}}$
$F$ is the force between the two bodies
$G$ is the gravitational constant
$M$ is mass for first body
$m$ is mass of second body
$r$ is distance between two bodies
Let us consider that the first body is earth with mass $M$, $r$ radius. Now the force acting along the body will be
$F = mg$
$g$ is acceleration due to gravity
From the above two equations, we can write that,
$\dfrac {{GMm}} {{{r^2}}} = mg$
$ \Rightarrow g = \dfrac{{GM}}{{{r^2}}}$
Hence we have a relation between $g$ and $G$.
Note: Although the relationship between g and G in physics can be expressed in a shape. Because of the gravity and the universal gravity, there is no relation between the acceleration and the G value. For some point in this world, the value of G is constant. G and g are not mutually based.
Complete step by step solution:
The acceleration of a body in free fall due to the massive body's gravity is g. The attraction force between two objects with a unit mass divided in some portion of this universe by a unit distance is G.
The gravity of any large body is g. The inertia on an object. A universal gravitational constant denoting G is the attraction force between any two masses divided by unit size. There is no proportional relationship between G and g. That implies that they are distinct bodies.
Let’s consider two bodies of masses $M$ and $m$ kept at distance $r$ from each other, now, according to Newton’s law of gravitation, we know that,
$F = \dfrac{{GMm}}{{{r^2}}}$
$F$ is the force between the two bodies
$G$ is the gravitational constant
$M$ is mass for first body
$m$ is mass of second body
$r$ is distance between two bodies
Let us consider that the first body is earth with mass $M$, $r$ radius. Now the force acting along the body will be
$F = mg$
$g$ is acceleration due to gravity
From the above two equations, we can write that,
$\dfrac {{GMm}} {{{r^2}}} = mg$
$ \Rightarrow g = \dfrac{{GM}}{{{r^2}}}$
Hence we have a relation between $g$ and $G$.
Note: Although the relationship between g and G in physics can be expressed in a shape. Because of the gravity and the universal gravity, there is no relation between the acceleration and the G value. For some point in this world, the value of G is constant. G and g are not mutually based.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A ball of mass 05 Kg moving with a velocity of 2ms class 11 physics JEE_Main
If two bulbs of 25W and 100W rated at 200V are connected class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
A mosquito with 8 legs stands on the water surface class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main