Answer
Verified
111.9k+ views
Hint: As the function is in the form of variable to the power of variable we apply log on both sides of the equation and then differentiate.
Complete step-by-step answer:
Let $y = {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}$
Take log both the side
$ \Rightarrow \log y = \log {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}$
We know that $\log {a^b} = b\log a$
$ \Rightarrow \log y = \left( {\sin x - \cos x} \right)\log \left( {\sin x - \cos x} \right)$
Now differentiate both the side w.r.t x
Here we use chain rule of differentiation
Differentiation of sinx wrt x is cosx
Differentiation of cosx wrt x is -sinx
Differentiation of logx wrt x is $\dfrac{1}{x}$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{{d\log \left( {\sin x - \cos x} \right)}}{{dx}} + \log \left( {\sin x - \cos x} \right)\dfrac{{d\left( {sinx - \cos x} \right)}}{{dx}}$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{1}{{\left( {\sin x - \cos x} \right)}}\dfrac{{d\left( {\sin x - \cos x} \right)}}{{dx}} + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{1}{{\left( {\sin x - \cos x} \right)}}\left( {\cos x + \sin x} \right) + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\cos x + \sin x} \right) + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}\left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
So this is your required answer.
Note: In this type of question always take log on both sides then solve, If there is any function in log then after applying differentiation of log function is again differentiated w.r.t the variable.
Complete step-by-step answer:
Let $y = {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}$
Take log both the side
$ \Rightarrow \log y = \log {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}$
We know that $\log {a^b} = b\log a$
$ \Rightarrow \log y = \left( {\sin x - \cos x} \right)\log \left( {\sin x - \cos x} \right)$
Now differentiate both the side w.r.t x
Here we use chain rule of differentiation
Differentiation of sinx wrt x is cosx
Differentiation of cosx wrt x is -sinx
Differentiation of logx wrt x is $\dfrac{1}{x}$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{{d\log \left( {\sin x - \cos x} \right)}}{{dx}} + \log \left( {\sin x - \cos x} \right)\dfrac{{d\left( {sinx - \cos x} \right)}}{{dx}}$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{1}{{\left( {\sin x - \cos x} \right)}}\dfrac{{d\left( {\sin x - \cos x} \right)}}{{dx}} + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{1}{{\left( {\sin x - \cos x} \right)}}\left( {\cos x + \sin x} \right) + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\cos x + \sin x} \right) + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}\left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
So this is your required answer.
Note: In this type of question always take log on both sides then solve, If there is any function in log then after applying differentiation of log function is again differentiated w.r.t the variable.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Displacement-Time Graph and Velocity-Time Graph for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Class 12 Maths Revision Notes for Three Dimensional Geometry of Chapter 11
Inertial and Non-Inertial Frame of Reference - JEE Important Topic