
Eccentric angle of a point on the ellipse \[{{x}^{2}}+3{{y}^{2}}=6\]at a distance \[2\]units from the center of the ellipse is :
(A) \[\dfrac{\pi }{4}\]
(B) \[\dfrac{\pi }{3}\]
(C) \[\dfrac{3\pi }{4}\]
(D) \[\dfrac{2\pi }{3}\]
Answer
232.8k+ views
Hint: Find out the center of the given ellipse and consider a parametric point. Later, Equate the distance between the parametric point and center of the ellipse to 2 units.
For, any given ellipse, \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\], the eccentric angle \[\theta \] is related as:
\[x=a\cos \theta ;\]
\[y=b\sin \theta ;\]
The given ellipse equation is: \[\dfrac{{{x}^{2}}}{6}+\dfrac{{{y}^{2}}}{2}=1.\]
So, here we will have \[a=\sqrt{6}\] and \[b=\sqrt{2}\];
And, \[x=\sqrt{6}\cos \theta ;y=\sqrt{2}\sin \theta \]
Now, the distance between the center\[\left( 0,0 \right)\] and the point \[\left( \sqrt{6}\cos \theta ,\sqrt{2}\sin \theta \right)\] on ellipse is given as 2 units.
Therefore, \[2=\sqrt{{{\left( \sqrt{6}\cos \theta -0 \right)}^{2}}+{{\left( \sqrt{2}\sin \theta -0 \right)}^{2}}}\]
Squaring on both sides, we will get:
\[{{2}^{2}}=6{{\cos }^{2}}\theta +2{{\sin }^{2}}\theta \]
Now, substituting \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \], we will have:
\[4=4{{\cos }^{2}}\theta +2\]
We get, \[{{\cos }^{2}}\theta =\dfrac{1}{2}\]
\[\to \cos \theta =\pm \dfrac{1}{\sqrt{2}}\].
Therefore, \[\theta =\left( 2n+1 \right)\dfrac{\pi }{4},n\in z\]
So, the value of \[\theta \] is either \[\dfrac{\pi }{4}or\dfrac{3\pi }{4}\].
Hence, option A and C are correct
Note: We have to make sure that you consider the both positive and negative values of \[\cos \theta \]after applying the square root every time. Remember that the general solution of Cosine trigonometric function is \[\theta =\left( 2n+1 \right)\dfrac{\pi }{4},n\in z\].
For, any given ellipse, \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\], the eccentric angle \[\theta \] is related as:
\[x=a\cos \theta ;\]
\[y=b\sin \theta ;\]
The given ellipse equation is: \[\dfrac{{{x}^{2}}}{6}+\dfrac{{{y}^{2}}}{2}=1.\]
So, here we will have \[a=\sqrt{6}\] and \[b=\sqrt{2}\];
And, \[x=\sqrt{6}\cos \theta ;y=\sqrt{2}\sin \theta \]
Now, the distance between the center\[\left( 0,0 \right)\] and the point \[\left( \sqrt{6}\cos \theta ,\sqrt{2}\sin \theta \right)\] on ellipse is given as 2 units.
Therefore, \[2=\sqrt{{{\left( \sqrt{6}\cos \theta -0 \right)}^{2}}+{{\left( \sqrt{2}\sin \theta -0 \right)}^{2}}}\]
Squaring on both sides, we will get:
\[{{2}^{2}}=6{{\cos }^{2}}\theta +2{{\sin }^{2}}\theta \]
Now, substituting \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \], we will have:
\[4=4{{\cos }^{2}}\theta +2\]
We get, \[{{\cos }^{2}}\theta =\dfrac{1}{2}\]
\[\to \cos \theta =\pm \dfrac{1}{\sqrt{2}}\].
Therefore, \[\theta =\left( 2n+1 \right)\dfrac{\pi }{4},n\in z\]
So, the value of \[\theta \] is either \[\dfrac{\pi }{4}or\dfrac{3\pi }{4}\].
Hence, option A and C are correct
Note: We have to make sure that you consider the both positive and negative values of \[\cos \theta \]after applying the square root every time. Remember that the general solution of Cosine trigonometric function is \[\theta =\left( 2n+1 \right)\dfrac{\pi }{4},n\in z\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

