
What is the electronic configuration for tin?
$\begin{align}
& \text{A}\text{. }\!\![\!\!\text{ Kr }\!\!]\!\!\text{ 5}{{\text{s}}^{\text{2}}}\text{5}{{\text{p}}^{\text{2}}} \\
& \text{B}\text{. }\!\![\!\!\text{ Kr }\!\!]\!\!\text{ 4}{{\text{d}}^{\text{10}}}\text{5}{{\text{s}}^{\text{2}}}\text{5}{{\text{p}}^{\text{2}}} \\
& \text{C}\text{.1}{{\text{s}}^{\text{2}}}\text{2}{{\text{s}}^{\text{2}}}\text{2}{{\text{p}}^{\text{6}}}\text{3}{{\text{s}}^{\text{2}}}\text{3}{{\text{p}}^{\text{6}}}\text{3}{{\text{d}}^{\text{10}}}\text{4}{{\text{s}}^{\text{2}}}\text{4}{{\text{p}}^{\text{2}}} \\
& \text{D}\text{. }\!\![\!\!\text{ Kr }\!\!]\!\!\text{ 4}{{\text{d}}^{\text{11}}}\text{5}{{\text{s}}^{\text{2}}}\text{5}{{\text{p}}^{\text{1}}} \\
\end{align}$
Answer
224.7k+ views
Hint:To answer this question the information of tin atomic number must be known. The tin has an atomic number of 50, which means tin has 50 electrons. Thus, Aufbau principle will be utilized to solve the question.
Complete step by step answer:
The electronic configuration can be described via Aufbau principle.
This principle states that the electrons of an atom or ions, that are in ground state, fill the orbital of lower energy first then they enter to the highest energy orbital.
For example, the electrons first enter to 1s then 2s then 2p, 3s, 3p, 4s, 3d and so on.
The atom or ions are most stable when the s, p, d, f orbital are fully or half filled with electrons.
Tin (symbol – Sn) has an atomic number 50. It means it has 50 electrons.
Here, as the electron of tin reaches and fulfil the vacant orbitals it would be filling the orbital as following according to the Aufbau principle i.e. 1s, 2s,2p,3s,3p,4s,3d,4p,5s,4d and 5p orbitals.
Tin lies in the group-14 of the periodic table, so it’s electronic configuration will be similar to the carbon.
So the electronic configuration is $\text{1}{{\text{s}}^{\text{2}}}\text{2}{{\text{s}}^{\text{2}}}\text{2}{{\text{p}}^{\text{6}}}\text{3}{{\text{s}}^{\text{2}}}\text{3}{{\text{p}}^{\text{6}}}\text{3}{{\text{d}}^{\text{10}}}\text{4}{{\text{s}}^{\text{2}}}\text{4}{{\text{p}}^{\text{6}}}\text{4}{{\text{d}}^{\text{10}}}\text{5}{{\text{s}}^{\text{2}}}\text{5}{{\text{p}}^{\text{2}}}$ or \[\text{ }\!\![\!\!\text{ Kr }\!\!]\!\!\text{ 4}{{\text{d}}^{\text{10}}}\text{5}{{\text{s}}^{\text{2}}}\text{5}{{\text{p}}^{\text{2}}}\]as Krypton has electronic configuration $\text{1}{{\text{s}}^{\text{2}}}\text{2}{{\text{s}}^{\text{2}}}\text{2}{{\text{p}}^{\text{6}}}\text{3}{{\text{s}}^{\text{2}}}\text{3}{{\text{p}}^{\text{6}}}\text{3}{{\text{d}}^{\text{10}}}\text{4}{{\text{s}}^{\text{2}}}\text{4}{{\text{p}}^{\text{6}}}$.
So, the correct answer is option-B.
Note:
Aufbau principle describes the manner of electrons filled in an atomic orbital of an atom in the ground state configuration. The principle stated that, based on the energy level of atomic orbital electron fills happen. The electron fills to the respective atomic orbital happens with the fact that lowest energy orbitals are first occupied by electrons, if they completely fill then in the higher energy level orbitals start to be occupied by electrons.
Complete step by step answer:
The electronic configuration can be described via Aufbau principle.
This principle states that the electrons of an atom or ions, that are in ground state, fill the orbital of lower energy first then they enter to the highest energy orbital.
For example, the electrons first enter to 1s then 2s then 2p, 3s, 3p, 4s, 3d and so on.
The atom or ions are most stable when the s, p, d, f orbital are fully or half filled with electrons.
Tin (symbol – Sn) has an atomic number 50. It means it has 50 electrons.
Here, as the electron of tin reaches and fulfil the vacant orbitals it would be filling the orbital as following according to the Aufbau principle i.e. 1s, 2s,2p,3s,3p,4s,3d,4p,5s,4d and 5p orbitals.
Tin lies in the group-14 of the periodic table, so it’s electronic configuration will be similar to the carbon.
So the electronic configuration is $\text{1}{{\text{s}}^{\text{2}}}\text{2}{{\text{s}}^{\text{2}}}\text{2}{{\text{p}}^{\text{6}}}\text{3}{{\text{s}}^{\text{2}}}\text{3}{{\text{p}}^{\text{6}}}\text{3}{{\text{d}}^{\text{10}}}\text{4}{{\text{s}}^{\text{2}}}\text{4}{{\text{p}}^{\text{6}}}\text{4}{{\text{d}}^{\text{10}}}\text{5}{{\text{s}}^{\text{2}}}\text{5}{{\text{p}}^{\text{2}}}$ or \[\text{ }\!\![\!\!\text{ Kr }\!\!]\!\!\text{ 4}{{\text{d}}^{\text{10}}}\text{5}{{\text{s}}^{\text{2}}}\text{5}{{\text{p}}^{\text{2}}}\]as Krypton has electronic configuration $\text{1}{{\text{s}}^{\text{2}}}\text{2}{{\text{s}}^{\text{2}}}\text{2}{{\text{p}}^{\text{6}}}\text{3}{{\text{s}}^{\text{2}}}\text{3}{{\text{p}}^{\text{6}}}\text{3}{{\text{d}}^{\text{10}}}\text{4}{{\text{s}}^{\text{2}}}\text{4}{{\text{p}}^{\text{6}}}$.
So, the correct answer is option-B.
Note:
Aufbau principle describes the manner of electrons filled in an atomic orbital of an atom in the ground state configuration. The principle stated that, based on the energy level of atomic orbital electron fills happen. The electron fills to the respective atomic orbital happens with the fact that lowest energy orbitals are first occupied by electrons, if they completely fill then in the higher energy level orbitals start to be occupied by electrons.
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

