
Empirical formula of a compound is \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\] and its molecular mass is 90, the molecular formula of the compound is :
A ) \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\]
B ) \[{{\text{C}}_{2}}{{\text{H}}_{\text{4}}}{{\text{O}}_{2}}\]
C ) \[{{\text{C}}_{6}}{{\text{H}}_{\text{12}}}{{\text{O}}_{6}}\]
D ) \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\]
Answer
224.1k+ views
Hint: Multiply the empirical formula with the ratio of the molecular formula weight to the Empirical formula weight to obtain the molecular formula.
Complete step by step answer:
The molecular formula gives the actual number of atoms of each element present in one molecule of a compound. The empirical formula gives the smallest whole number ratio of atoms of various elements present in a molecule of the given compound. In some cases, the empirical formula is same as the molecular formula. However in other compounds, empirical formula and the molecular formula are different. The relationship between the empirical formula and the molecular formula is as given below:
\[\text{Molecular formula = n }\times \text{ empirical formula }\]
Here, n is the ratio of the molecular formula weight to the empirical formula weight:
\[\text{n=}\dfrac{\text{Molecular formula weight}}{\text{Empirical formula weight}}\]
The atomic masses of carbon, hydrogen and oxygen are \[12\text{ }g/mol,\text{ }1\text{ }g/mol\text{ }and\text{ }16\text{ }g/mol\] respectively.
Empirical formula of a compound is \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\].
Calculate the empirical formula mass.
\[12\text{ }+2\left( 1 \right)+16=30\text{ }g/mol\]
The molecular mass is \[90\text{ }g/mol\].
Divide molecular formula weight with empirical formula weight to calculate n.
\[\begin{align}
& \text{n=}\dfrac{90\text{ g/mol}}{30\text{ g/mol}} \\
& \text{n=3} \\
\end{align}\]
Multiply empirical formula with 3 to obtain the molecular formula.
\[\begin{align}
& \text{Molecular formula = n }\times \text{ empirical formula } \\
& \text{Molecular formula = 3 }\times \text{ C}{{\text{H}}_{2}}\text{O } \\
& \text{Molecular formula = }{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}} \\
\end{align}\]
Hence, the molecular formula of the compound is \[{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}}\]:
Hence, the option A) \[{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}}\] is the correct option.
Note:
We can also calculate the mass of molecular given in the four options and match it with the options
For \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\], \[3\left( 12 \right)+6\left( 1 \right)+3\left( 16 \right)=36+6+48=90\]
For \[{{\text{C}}_{2}}{{\text{H}}_{\text{4}}}{{\text{O}}_{2}}\], \[2\left( 12 \right)+4\left( 1 \right)+2\left( 16 \right)=24+4+32=60\]
For \[{{\text{C}}_{6}}{{\text{H}}_{\text{12}}}{{\text{O}}_{6}}\], \[6\left( 12 \right)+12\left( 1 \right)+6\left( 16 \right)=72+12+96=180\]
For \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\] \[12+2\left( 1 \right)+16=30\]
The molecular mass of \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\] matches with that of given compound hence it is correct.
Complete step by step answer:
The molecular formula gives the actual number of atoms of each element present in one molecule of a compound. The empirical formula gives the smallest whole number ratio of atoms of various elements present in a molecule of the given compound. In some cases, the empirical formula is same as the molecular formula. However in other compounds, empirical formula and the molecular formula are different. The relationship between the empirical formula and the molecular formula is as given below:
\[\text{Molecular formula = n }\times \text{ empirical formula }\]
Here, n is the ratio of the molecular formula weight to the empirical formula weight:
\[\text{n=}\dfrac{\text{Molecular formula weight}}{\text{Empirical formula weight}}\]
The atomic masses of carbon, hydrogen and oxygen are \[12\text{ }g/mol,\text{ }1\text{ }g/mol\text{ }and\text{ }16\text{ }g/mol\] respectively.
Empirical formula of a compound is \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\].
Calculate the empirical formula mass.
\[12\text{ }+2\left( 1 \right)+16=30\text{ }g/mol\]
The molecular mass is \[90\text{ }g/mol\].
Divide molecular formula weight with empirical formula weight to calculate n.
\[\begin{align}
& \text{n=}\dfrac{90\text{ g/mol}}{30\text{ g/mol}} \\
& \text{n=3} \\
\end{align}\]
Multiply empirical formula with 3 to obtain the molecular formula.
\[\begin{align}
& \text{Molecular formula = n }\times \text{ empirical formula } \\
& \text{Molecular formula = 3 }\times \text{ C}{{\text{H}}_{2}}\text{O } \\
& \text{Molecular formula = }{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}} \\
\end{align}\]
Hence, the molecular formula of the compound is \[{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}}\]:
Hence, the option A) \[{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}}\] is the correct option.
Note:
We can also calculate the mass of molecular given in the four options and match it with the options
For \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\], \[3\left( 12 \right)+6\left( 1 \right)+3\left( 16 \right)=36+6+48=90\]
For \[{{\text{C}}_{2}}{{\text{H}}_{\text{4}}}{{\text{O}}_{2}}\], \[2\left( 12 \right)+4\left( 1 \right)+2\left( 16 \right)=24+4+32=60\]
For \[{{\text{C}}_{6}}{{\text{H}}_{\text{12}}}{{\text{O}}_{6}}\], \[6\left( 12 \right)+12\left( 1 \right)+6\left( 16 \right)=72+12+96=180\]
For \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\] \[12+2\left( 1 \right)+16=30\]
The molecular mass of \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\] matches with that of given compound hence it is correct.
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

