
Find the capacitive time constant of the RC circuit shown in the figure.
a) $0$
b) $\infty $
c) $2{\text{s}}$
d) $2\mu {\text{s}}$
Answer
133.8k+ views
Hint: The capacitor is shorted in the circuit diagram. This suggests that the potential difference across the capacitor is zero.
Formula Used: Time constant of the circuit is $\tau = RC$
Complete step by step answer:
Step 1: Explain the circuit diagram.
Step 2: Determine the time constant of the circuit.
Additional Information: When an increasing DC voltage is applied to a discharged capacitor, the capacitor charges up. When the voltage decreases the capacitor again discharges. This charging and discharging of the capacitor energy never happens in an instant. It takes some amount of time for the capacitor to charge or discharge to a specific percentage of its maximum supply value. This time is known as the time constant $\tau $. If the capacitor in the above RC circuit was not shorted, then the capacitor would have gradually charged up through the resistor until the voltage across the plates reached the supply voltage.
Note: Time constant represents the speed at which a system responds to change. Or, in this case it represents how fast the capacitor charges through the resistor. Here, the time constant is infinity. This means that the capacitor does not charge at all.
Formula Used: Time constant of the circuit is $\tau = RC$
Complete step by step answer:
Step 1: Explain the circuit diagram.
A capacitor of $C = 2\mu {\text{F}}$ is connected in series with a resistor of resistance $R = 1\Omega $ and connected to a battery. The capacitor is shorted.
Step 2: Determine the time constant of the circuit.
Time constant of the circuit is given by $\tau = RC$ .
Since the capacitor is shorted, the potential difference between the two plates will be zero.
We know that $C = \dfrac{Q}{V}$ .
Now, potential difference $V = 0$ .
This implies that $C = \infty $ .
Hence $\tau = R \times \infty = \infty $ .
Therefore, the correct option is b)$\infty $ .
Additional Information: When an increasing DC voltage is applied to a discharged capacitor, the capacitor charges up. When the voltage decreases the capacitor again discharges. This charging and discharging of the capacitor energy never happens in an instant. It takes some amount of time for the capacitor to charge or discharge to a specific percentage of its maximum supply value. This time is known as the time constant $\tau $. If the capacitor in the above RC circuit was not shorted, then the capacitor would have gradually charged up through the resistor until the voltage across the plates reached the supply voltage.
Note: Time constant represents the speed at which a system responds to change. Or, in this case it represents how fast the capacitor charges through the resistor. Here, the time constant is infinity. This means that the capacitor does not charge at all.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
