Find the following squares using identities.
(i) \[{(b - 7)^2}\]
(ii) ${(xy + 3z)^2}$
(iii) ${(6{x^2} - 5y)^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
(v) ${(0.4p - 0.5q)^2}$
(vi) ${(2xy + 5y)^2}$
Answer
Verified
116.4k+ views
Hint: In the question itself it is said to use identities for finding the squares. There are algebraic identities for ${(a + b)^2}$ and ${(a - b)^2}$. Using these and simplifying we can find the answers.
Useful formula:
For any $a,b$ we have these identities.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Complete step by step solution:
Here we are given six questions to find the square using algebraic identities.
We can do one by one.
(i) \[{(b - 7)^2}\]
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = b,b = 7$
$ \Rightarrow {(b - 7)^2} = {b^2} - 2 \times b \times 7 + {7^2}$
Simplifying we get,
$ \Rightarrow {(b - 7)^2} = {b^2} - 14b + 49$
(ii) ${(xy + 3z)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = xy,b = 3z$
${(xy + 3z)^2} = {(xy)^2} + 2 \times xy \times 3z + {(3z)^2}$
Simplifying we get,
$ \Rightarrow {(xy + 3z)^2} = {x^2}{y^2} + 6xyz + 9{z^2}$
(iii) ${(6{x^2} - 5y)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 6{x^2},b = 5y$
${(6{x^2} - 5y)^2} = {(6{x^2})^2} - 2 \times 6{x^2} \times 5{y^{}} + {(5y)^2}$
Simplifying we get,
${(6{x^2} - 5y)^2} = 36{x^4} - 60{x^2}{y^{}} + 25{y^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = \dfrac{2}{3}m,b = \dfrac{3}{2}n$
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = {(\dfrac{2}{3}m)^2} + 2 \times \dfrac{2}{3}m \times \dfrac{3}{2}n + {(\dfrac{3}{2}n)^2}$
Simplifying we get,
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = \dfrac{4}{9}{m^2} + 2mn + \dfrac{9}{4}{n^2}$
(v) ${(0.4p - 0.5q)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 0.4p,b = 0.5q$
${(0.4p - 0.5q)^2} = {(0.4p)^2} - 2 \times 0.4p \times 0.5q + {(0.5q)^2}$
Simplifying we get,
${(0.4p - 0.5q)^2} = 0.16{p^2} - 0.4pq + 0.25{q^2}$
(vi) ${(2xy + 5y)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = 2xym,b = 5y$
${(2xy + 5y)^2} = {(2xy)^2} + 2 \times 2xy \times 5y + {(5y)^2}$
Simplifying we get,
${(2xy + 5y)^2} = 4{x^2}{y^2} + 20x{y^2} + 25{y^2}$
$ \Rightarrow {(2xy + 5y)^2} = {y^2}(4{x^2} + 20x + 25)$
Additional information:These identities can be extended to any number of terms like ${(a + b + c)^2}$ by taking two terms together at a time.
Note: We can possibly make a mistake in cases when the terms itself are squares like in question (iii). In that case, squaring the term will lead to fourth power. Also these two identities can be united. We have $a - b = a + ( - b)$. So instead of the second identity we can simply replace $b$ by $ - b$ in the first identity.
Useful formula:
For any $a,b$ we have these identities.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Complete step by step solution:
Here we are given six questions to find the square using algebraic identities.
We can do one by one.
(i) \[{(b - 7)^2}\]
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = b,b = 7$
$ \Rightarrow {(b - 7)^2} = {b^2} - 2 \times b \times 7 + {7^2}$
Simplifying we get,
$ \Rightarrow {(b - 7)^2} = {b^2} - 14b + 49$
(ii) ${(xy + 3z)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = xy,b = 3z$
${(xy + 3z)^2} = {(xy)^2} + 2 \times xy \times 3z + {(3z)^2}$
Simplifying we get,
$ \Rightarrow {(xy + 3z)^2} = {x^2}{y^2} + 6xyz + 9{z^2}$
(iii) ${(6{x^2} - 5y)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 6{x^2},b = 5y$
${(6{x^2} - 5y)^2} = {(6{x^2})^2} - 2 \times 6{x^2} \times 5{y^{}} + {(5y)^2}$
Simplifying we get,
${(6{x^2} - 5y)^2} = 36{x^4} - 60{x^2}{y^{}} + 25{y^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = \dfrac{2}{3}m,b = \dfrac{3}{2}n$
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = {(\dfrac{2}{3}m)^2} + 2 \times \dfrac{2}{3}m \times \dfrac{3}{2}n + {(\dfrac{3}{2}n)^2}$
Simplifying we get,
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = \dfrac{4}{9}{m^2} + 2mn + \dfrac{9}{4}{n^2}$
(v) ${(0.4p - 0.5q)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 0.4p,b = 0.5q$
${(0.4p - 0.5q)^2} = {(0.4p)^2} - 2 \times 0.4p \times 0.5q + {(0.5q)^2}$
Simplifying we get,
${(0.4p - 0.5q)^2} = 0.16{p^2} - 0.4pq + 0.25{q^2}$
(vi) ${(2xy + 5y)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = 2xym,b = 5y$
${(2xy + 5y)^2} = {(2xy)^2} + 2 \times 2xy \times 5y + {(5y)^2}$
Simplifying we get,
${(2xy + 5y)^2} = 4{x^2}{y^2} + 20x{y^2} + 25{y^2}$
$ \Rightarrow {(2xy + 5y)^2} = {y^2}(4{x^2} + 20x + 25)$
Additional information:These identities can be extended to any number of terms like ${(a + b + c)^2}$ by taking two terms together at a time.
Note: We can possibly make a mistake in cases when the terms itself are squares like in question (iii). In that case, squaring the term will lead to fourth power. Also these two identities can be united. We have $a - b = a + ( - b)$. So instead of the second identity we can simply replace $b$ by $ - b$ in the first identity.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs