Find the modulus, argument and the principal argument of the complex number
${{\left( \tan 1-i \right)}^{2}}$. \[\]
A.$\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ \[\]
B. $\text{Modulus}={{\operatorname{cosec}}^{2}}1,\arg \left( z \right)=2n\pi -\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( -2-\pi \right)$\[\]
C. $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi -\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=-\left( 2-\pi \right)$\[\]
D. $\text{Modulus}=\text{cose}{{\text{c}}^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$\[\]
Answer
Verified
116.4k+ views
Hint: We express the given complex number ${{\left( \tan 1-i \right)}^{2}}$ in the form $z=a+ib$. We find its modulus using the formula $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$, the principal argument using the formula $\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]$ and all the arguments using the formula ${{\theta }_{n}}=\theta +2n\pi $ where $n\in Z.$\[\]
Complete step-by-step solution:
We know that the general form of a complex number is $z=a+ib$ where $a\in R$ is called the real part of $z$ and $b\in R$ is called the imaginary part of the complex number. The modulus of the complex number $z$ is given by
\[\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\]
The modulus of the complex number represents the distance of the point $P\left( a,b \right)$ from the origin O in the complex plane. The principal argument of a complex number is a function which returns the measured counter-clockwise of the angle made by OP with positive real axis in radian . The principal argument $\theta $ which lies in the interval $\left( -\pi ,\pi \right]$ of the complex number is $z$ is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]\]
All other arguments of the complex number is $z$ with integer $n$ is
\[{{\theta }_{n}}=\theta +2n\pi \]
We know the trigonometric identity involving the secant and tangent of the angle $A$ as,
\[{{\sec }^{2}}A-{{\tan }^{2}}A=1\]
We are given in the question the complex number ${{\left( \tan 1-i \right)}^{2}}$. Let us express it in the form $z=a+ib$. So we have,
\[\begin{align}
& z={{\left( \tan 1-i \right)}^{2}} \\
& ={{\tan }^{2}}1+{{\left( i \right)}^{2}}-2i\tan 1 \\
& ={{\tan }^{2}}1-1+i\left( -2\tan 1 \right) \\
\end{align}\]
So we have obtained $a={{\tan }^{2}}-1,b=-2\tan 1$. So the modulus of $z={{\left( \tan 1-i \right)}^{2}}$ is,\[\begin{align}
& \left| z \right|=\sqrt{{{\left( {{\tan }^{2}}1-1 \right)}^{2}}+{{\left( -2\tan 1 \right)}^{2}}} \\
& =\sqrt{{{\tan }^{4}}1+1-2{{\tan }^{2}}1+4{{\tan }^{2}}1} \\
& =\sqrt{{{\tan }^{4}}1+1+2{{\tan }^{2}}1} \\
& =\sqrt{{{\left( {{\tan }^{2}}1+1 \right)}^{2}}} \\
\end{align}\]
We use the relation between the secant and tangent of the angle for $A=1$ and have,
\[\left| z \right|=\sqrt{{{\left( {{\sec }^{2}}1 \right)}^{2}}}={{\sec }^{2}}1\]
The principal argument of the complex number $z={{\left( \tan 1-i \right)}^{2}}$is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)={{\tan }^{-1}}\left( \dfrac{-2\tan 1}{{{\tan }^{2}}-1} \right)={{\tan }^{-1}} \left( \dfrac{2\tan \left( 1 \right)}{1-{{\tan }^{2}}\left( 1 \right)} \right)\]
We have the formula for double angle of tangent $\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$. So we get for $A=1$,
\[\begin{align}
& \theta ={{\tan }^{-1}}\left( \tan \left( 2\left( 1 \right) \right) \right) \\
& ={{\tan }^{-1}}\left( \tan 2 \right) \\
\end{align}\]
The solutions for above $\theta $ are $\theta =2+n\pi ,n\in Z$ but the principal argument lies in the interval $\left( -\pi ,\pi \right]$.So the integers satisfying principal is $n=-1,0$ and hence principal values are $\theta =2-\pi ,2$ out of which $\theta =2-\pi $ is in the options. We now find the other all other arguments of the complex number is $z$ with integer $n$ as
\[{{\theta }_{n}}=2n\pi +\left( 2-\pi \right)\]
So we have $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ and the correct option is A.
Note: We can also find the argument by converting the complex number $z=\tan 1-i$ to the form $z=r{{e}^{i\theta }}$ and then using the formula ${{z}^{2}}=\left| z \right|{{e}^{i\left( 2\theta \right)}}$ where $r$ is the modulus and $\theta $ is the principal argument. We have rejected negative values because modulus is always positive.
Complete step-by-step solution:
We know that the general form of a complex number is $z=a+ib$ where $a\in R$ is called the real part of $z$ and $b\in R$ is called the imaginary part of the complex number. The modulus of the complex number $z$ is given by
\[\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\]
The modulus of the complex number represents the distance of the point $P\left( a,b \right)$ from the origin O in the complex plane. The principal argument of a complex number is a function which returns the measured counter-clockwise of the angle made by OP with positive real axis in radian . The principal argument $\theta $ which lies in the interval $\left( -\pi ,\pi \right]$ of the complex number is $z$ is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]\]
All other arguments of the complex number is $z$ with integer $n$ is
\[{{\theta }_{n}}=\theta +2n\pi \]
We know the trigonometric identity involving the secant and tangent of the angle $A$ as,
\[{{\sec }^{2}}A-{{\tan }^{2}}A=1\]
We are given in the question the complex number ${{\left( \tan 1-i \right)}^{2}}$. Let us express it in the form $z=a+ib$. So we have,
\[\begin{align}
& z={{\left( \tan 1-i \right)}^{2}} \\
& ={{\tan }^{2}}1+{{\left( i \right)}^{2}}-2i\tan 1 \\
& ={{\tan }^{2}}1-1+i\left( -2\tan 1 \right) \\
\end{align}\]
So we have obtained $a={{\tan }^{2}}-1,b=-2\tan 1$. So the modulus of $z={{\left( \tan 1-i \right)}^{2}}$ is,\[\begin{align}
& \left| z \right|=\sqrt{{{\left( {{\tan }^{2}}1-1 \right)}^{2}}+{{\left( -2\tan 1 \right)}^{2}}} \\
& =\sqrt{{{\tan }^{4}}1+1-2{{\tan }^{2}}1+4{{\tan }^{2}}1} \\
& =\sqrt{{{\tan }^{4}}1+1+2{{\tan }^{2}}1} \\
& =\sqrt{{{\left( {{\tan }^{2}}1+1 \right)}^{2}}} \\
\end{align}\]
We use the relation between the secant and tangent of the angle for $A=1$ and have,
\[\left| z \right|=\sqrt{{{\left( {{\sec }^{2}}1 \right)}^{2}}}={{\sec }^{2}}1\]
The principal argument of the complex number $z={{\left( \tan 1-i \right)}^{2}}$is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)={{\tan }^{-1}}\left( \dfrac{-2\tan 1}{{{\tan }^{2}}-1} \right)={{\tan }^{-1}} \left( \dfrac{2\tan \left( 1 \right)}{1-{{\tan }^{2}}\left( 1 \right)} \right)\]
We have the formula for double angle of tangent $\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$. So we get for $A=1$,
\[\begin{align}
& \theta ={{\tan }^{-1}}\left( \tan \left( 2\left( 1 \right) \right) \right) \\
& ={{\tan }^{-1}}\left( \tan 2 \right) \\
\end{align}\]
The solutions for above $\theta $ are $\theta =2+n\pi ,n\in Z$ but the principal argument lies in the interval $\left( -\pi ,\pi \right]$.So the integers satisfying principal is $n=-1,0$ and hence principal values are $\theta =2-\pi ,2$ out of which $\theta =2-\pi $ is in the options. We now find the other all other arguments of the complex number is $z$ with integer $n$ as
\[{{\theta }_{n}}=2n\pi +\left( 2-\pi \right)\]
So we have $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ and the correct option is A.
Note: We can also find the argument by converting the complex number $z=\tan 1-i$ to the form $z=r{{e}^{i\theta }}$ and then using the formula ${{z}^{2}}=\left| z \right|{{e}^{i\left( 2\theta \right)}}$ where $r$ is the modulus and $\theta $ is the principal argument. We have rejected negative values because modulus is always positive.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs