
Find the modulus, argument and the principal argument of the complex number
${{\left( \tan 1-i \right)}^{2}}$. \[\]
A.$\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ \[\]
B. $\text{Modulus}={{\operatorname{cosec}}^{2}}1,\arg \left( z \right)=2n\pi -\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( -2-\pi \right)$\[\]
C. $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi -\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=-\left( 2-\pi \right)$\[\]
D. $\text{Modulus}=\text{cose}{{\text{c}}^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$\[\]
Answer
232.8k+ views
Hint: We express the given complex number ${{\left( \tan 1-i \right)}^{2}}$ in the form $z=a+ib$. We find its modulus using the formula $\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$, the principal argument using the formula $\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]$ and all the arguments using the formula ${{\theta }_{n}}=\theta +2n\pi $ where $n\in Z.$\[\]
Complete step-by-step solution:
We know that the general form of a complex number is $z=a+ib$ where $a\in R$ is called the real part of $z$ and $b\in R$ is called the imaginary part of the complex number. The modulus of the complex number $z$ is given by
\[\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\]

The modulus of the complex number represents the distance of the point $P\left( a,b \right)$ from the origin O in the complex plane. The principal argument of a complex number is a function which returns the measured counter-clockwise of the angle made by OP with positive real axis in radian . The principal argument $\theta $ which lies in the interval $\left( -\pi ,\pi \right]$ of the complex number is $z$ is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]\]
All other arguments of the complex number is $z$ with integer $n$ is
\[{{\theta }_{n}}=\theta +2n\pi \]
We know the trigonometric identity involving the secant and tangent of the angle $A$ as,
\[{{\sec }^{2}}A-{{\tan }^{2}}A=1\]
We are given in the question the complex number ${{\left( \tan 1-i \right)}^{2}}$. Let us express it in the form $z=a+ib$. So we have,
\[\begin{align}
& z={{\left( \tan 1-i \right)}^{2}} \\
& ={{\tan }^{2}}1+{{\left( i \right)}^{2}}-2i\tan 1 \\
& ={{\tan }^{2}}1-1+i\left( -2\tan 1 \right) \\
\end{align}\]
So we have obtained $a={{\tan }^{2}}-1,b=-2\tan 1$. So the modulus of $z={{\left( \tan 1-i \right)}^{2}}$ is,\[\begin{align}
& \left| z \right|=\sqrt{{{\left( {{\tan }^{2}}1-1 \right)}^{2}}+{{\left( -2\tan 1 \right)}^{2}}} \\
& =\sqrt{{{\tan }^{4}}1+1-2{{\tan }^{2}}1+4{{\tan }^{2}}1} \\
& =\sqrt{{{\tan }^{4}}1+1+2{{\tan }^{2}}1} \\
& =\sqrt{{{\left( {{\tan }^{2}}1+1 \right)}^{2}}} \\
\end{align}\]
We use the relation between the secant and tangent of the angle for $A=1$ and have,
\[\left| z \right|=\sqrt{{{\left( {{\sec }^{2}}1 \right)}^{2}}}={{\sec }^{2}}1\]
The principal argument of the complex number $z={{\left( \tan 1-i \right)}^{2}}$is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)={{\tan }^{-1}}\left( \dfrac{-2\tan 1}{{{\tan }^{2}}-1} \right)={{\tan }^{-1}} \left( \dfrac{2\tan \left( 1 \right)}{1-{{\tan }^{2}}\left( 1 \right)} \right)\]
We have the formula for double angle of tangent $\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$. So we get for $A=1$,
\[\begin{align}
& \theta ={{\tan }^{-1}}\left( \tan \left( 2\left( 1 \right) \right) \right) \\
& ={{\tan }^{-1}}\left( \tan 2 \right) \\
\end{align}\]
The solutions for above $\theta $ are $\theta =2+n\pi ,n\in Z$ but the principal argument lies in the interval $\left( -\pi ,\pi \right]$.So the integers satisfying principal is $n=-1,0$ and hence principal values are $\theta =2-\pi ,2$ out of which $\theta =2-\pi $ is in the options. We now find the other all other arguments of the complex number is $z$ with integer $n$ as
\[{{\theta }_{n}}=2n\pi +\left( 2-\pi \right)\]
So we have $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ and the correct option is A.
Note: We can also find the argument by converting the complex number $z=\tan 1-i$ to the form $z=r{{e}^{i\theta }}$ and then using the formula ${{z}^{2}}=\left| z \right|{{e}^{i\left( 2\theta \right)}}$ where $r$ is the modulus and $\theta $ is the principal argument. We have rejected negative values because modulus is always positive.
Complete step-by-step solution:
We know that the general form of a complex number is $z=a+ib$ where $a\in R$ is called the real part of $z$ and $b\in R$ is called the imaginary part of the complex number. The modulus of the complex number $z$ is given by
\[\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\]

The modulus of the complex number represents the distance of the point $P\left( a,b \right)$ from the origin O in the complex plane. The principal argument of a complex number is a function which returns the measured counter-clockwise of the angle made by OP with positive real axis in radian . The principal argument $\theta $ which lies in the interval $\left( -\pi ,\pi \right]$ of the complex number is $z$ is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right),\theta \in \left( -\pi ,\pi \right]\]
All other arguments of the complex number is $z$ with integer $n$ is
\[{{\theta }_{n}}=\theta +2n\pi \]
We know the trigonometric identity involving the secant and tangent of the angle $A$ as,
\[{{\sec }^{2}}A-{{\tan }^{2}}A=1\]
We are given in the question the complex number ${{\left( \tan 1-i \right)}^{2}}$. Let us express it in the form $z=a+ib$. So we have,
\[\begin{align}
& z={{\left( \tan 1-i \right)}^{2}} \\
& ={{\tan }^{2}}1+{{\left( i \right)}^{2}}-2i\tan 1 \\
& ={{\tan }^{2}}1-1+i\left( -2\tan 1 \right) \\
\end{align}\]
So we have obtained $a={{\tan }^{2}}-1,b=-2\tan 1$. So the modulus of $z={{\left( \tan 1-i \right)}^{2}}$ is,\[\begin{align}
& \left| z \right|=\sqrt{{{\left( {{\tan }^{2}}1-1 \right)}^{2}}+{{\left( -2\tan 1 \right)}^{2}}} \\
& =\sqrt{{{\tan }^{4}}1+1-2{{\tan }^{2}}1+4{{\tan }^{2}}1} \\
& =\sqrt{{{\tan }^{4}}1+1+2{{\tan }^{2}}1} \\
& =\sqrt{{{\left( {{\tan }^{2}}1+1 \right)}^{2}}} \\
\end{align}\]
We use the relation between the secant and tangent of the angle for $A=1$ and have,
\[\left| z \right|=\sqrt{{{\left( {{\sec }^{2}}1 \right)}^{2}}}={{\sec }^{2}}1\]
The principal argument of the complex number $z={{\left( \tan 1-i \right)}^{2}}$is
\[\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)={{\tan }^{-1}}\left( \dfrac{-2\tan 1}{{{\tan }^{2}}-1} \right)={{\tan }^{-1}} \left( \dfrac{2\tan \left( 1 \right)}{1-{{\tan }^{2}}\left( 1 \right)} \right)\]
We have the formula for double angle of tangent $\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A}$. So we get for $A=1$,
\[\begin{align}
& \theta ={{\tan }^{-1}}\left( \tan \left( 2\left( 1 \right) \right) \right) \\
& ={{\tan }^{-1}}\left( \tan 2 \right) \\
\end{align}\]
The solutions for above $\theta $ are $\theta =2+n\pi ,n\in Z$ but the principal argument lies in the interval $\left( -\pi ,\pi \right]$.So the integers satisfying principal is $n=-1,0$ and hence principal values are $\theta =2-\pi ,2$ out of which $\theta =2-\pi $ is in the options. We now find the other all other arguments of the complex number is $z$ with integer $n$ as
\[{{\theta }_{n}}=2n\pi +\left( 2-\pi \right)\]
So we have $\text{Modulus}={{\sec }^{2}}1,\arg \left( z \right)=2n\pi +\left( 2-\pi \right),\text{pricipal }\arg \left( z \right)=\left( 2-\pi \right)$ and the correct option is A.
Note: We can also find the argument by converting the complex number $z=\tan 1-i$ to the form $z=r{{e}^{i\theta }}$ and then using the formula ${{z}^{2}}=\left| z \right|{{e}^{i\left( 2\theta \right)}}$ where $r$ is the modulus and $\theta $ is the principal argument. We have rejected negative values because modulus is always positive.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

