
Find the number of atoms present in 100 grams of sodium:
(A) $2.6182 \times {10^{23}}$
(B) $0.6182 \times {10^{24}}$
(C) $2.6182 \times {10^{24}}$
(D) $2.6182 \times {10^{20}}$
Answer
133.8k+ views
Hint: One mole of any particle is equal to $6.022 \times {10^{23}}$ particles. This number is called the Avogadro’s number.
Complete step-by-step answer: The given mass of sodium (Na) in grams ${\text{ = 100g}}$
We need to find the number of atoms in 100 grams of sodium (Na).
We know that the atomic mass of sodium (Na) is equal to 23 grams. Now from the mole concept, we know that Gram atomic mass = 1 gm atom $ = 6.022 \times {10^{23}}$ atoms.
So, according to the mole concept, 23 grams of sodium (Na) contains $6.022 \times {10^{23}}$ number of atoms. Thus, 1 g of sodium (Na) will contain $ = \dfrac{{6.022 \times {{10}^{23}}}}{{23}}$ atoms.
Therefore, 100 g of sodium will contain $ = \dfrac{{6.022 \times {{10}^{23}}}}{{23}} \times 100$ number of atoms.
$ = 2.6182 \times {10^{24}}$ number of atoms.
Therefore, option (A), option (B) and option (D) are not correct. So, the correct option is (C).
Additional information: (1) Molecular weight refers to the average relative weight of an element or a molecule as compared to the weight of a ${{\text{C}}^{{\text{12}}}}$carbon atom taken as 12 on the atomic mass unit scale. The molecular weight of any substance can be calculated by adding the atomic weights of all its constituent atoms.
(2) Gram molecular weight of a substance refers to the molecular weight of that substance (in amu) in grams, i.e., it is the weight in grams which is numerically equal to its molecular weight.
(3) According to the mole concept, a mole represents $6.022 \times {10^{23}}$ particles irrespective of their nature. The amount of matter having this Avogadro’s number of particles represents one mole of that species.
Note: The mole concept can also be applied to calculate the number of molecules in the given mass of a substance. According to the mole concept, gram molecular mass will be equal to the Avogadro’s number of molecules. So the number of molecules in 1 g of the substance can be calculated and from this, the number of molecules in the given mass of that substance can also be determined.
Complete step-by-step answer: The given mass of sodium (Na) in grams ${\text{ = 100g}}$
We need to find the number of atoms in 100 grams of sodium (Na).
We know that the atomic mass of sodium (Na) is equal to 23 grams. Now from the mole concept, we know that Gram atomic mass = 1 gm atom $ = 6.022 \times {10^{23}}$ atoms.
So, according to the mole concept, 23 grams of sodium (Na) contains $6.022 \times {10^{23}}$ number of atoms. Thus, 1 g of sodium (Na) will contain $ = \dfrac{{6.022 \times {{10}^{23}}}}{{23}}$ atoms.
Therefore, 100 g of sodium will contain $ = \dfrac{{6.022 \times {{10}^{23}}}}{{23}} \times 100$ number of atoms.
$ = 2.6182 \times {10^{24}}$ number of atoms.
Therefore, option (A), option (B) and option (D) are not correct. So, the correct option is (C).
Additional information: (1) Molecular weight refers to the average relative weight of an element or a molecule as compared to the weight of a ${{\text{C}}^{{\text{12}}}}$carbon atom taken as 12 on the atomic mass unit scale. The molecular weight of any substance can be calculated by adding the atomic weights of all its constituent atoms.
(2) Gram molecular weight of a substance refers to the molecular weight of that substance (in amu) in grams, i.e., it is the weight in grams which is numerically equal to its molecular weight.
(3) According to the mole concept, a mole represents $6.022 \times {10^{23}}$ particles irrespective of their nature. The amount of matter having this Avogadro’s number of particles represents one mole of that species.
Note: The mole concept can also be applied to calculate the number of molecules in the given mass of a substance. According to the mole concept, gram molecular mass will be equal to the Avogadro’s number of molecules. So the number of molecules in 1 g of the substance can be calculated and from this, the number of molecules in the given mass of that substance can also be determined.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
