Find the size of the image formed in the situation shown in figure.
A) 0.5 cm
B) 0.6 cm
C) 1.2 cm
D) 1 cm
Answer
Verified
116.4k+ views
Hint: In this question, we have to find the size of the image and since all the required parameters are given in the question, we will find the required size of the image by mirror, we will use the mirror formula for two mediums.
Complete step by step answer:
We will now write the given data according to sign convention:
The distance of the object is u = -40 cm.
The radius of curvature of the refracting surface is R = -20 cm.
The height of the object is h = 1 cm.
We know that the lens maker formula is given by:
$\dfrac{{{n_2}}}{v} - \dfrac{{{n_1}}}{u} = \dfrac{{{n_2} - {n_1}}}{R}$
Here, v is the distance of image formed.
Here ${n_2} = 1.33$ is the refractive index of the second medium and ${n_1} = - 1$ is the refractive index of the first medium.
We will now substitute the known values in the above equation.
$\begin{array}{l}
\dfrac{{1.33}}{v} - \dfrac{1}{{ - 40\;cm}} = \dfrac{{1.33 - 1}}{{ - 20\;cm}}\\
v = 32.05\;cm
\end{array}$
We know that the expression for magnification ratio is given by:
$\dfrac{v}{u} = \dfrac{H}{h}$
Here, H is the height of the image formed.
We will now substitute the given and obtained values.
$\begin{array}{l}
\Rightarrow \dfrac{{32.05\;cm}}{{40\;cm}} = \dfrac{H}{{1\;cm}}\\
\Rightarrow H = 0.6\;cm
\end{array}$
Therefore, the correct option is (B).
Additional information: Reflection from a concave mirror follows the laws of reflection. The normal to the point of incidence is drawn along the radius of the mirror, i.e., it is drawn by joining the centre of curvature with the point of incidence.
Note: The formation of an image that occurs in a concave mirror mainly depends on the distance between the object and the mirror. Both real and virtual images are formed by the concave mirror. When the object is placed very close to the mirror, a virtual and magnified image is formed.
Complete step by step answer:
We will now write the given data according to sign convention:
The distance of the object is u = -40 cm.
The radius of curvature of the refracting surface is R = -20 cm.
The height of the object is h = 1 cm.
We know that the lens maker formula is given by:
$\dfrac{{{n_2}}}{v} - \dfrac{{{n_1}}}{u} = \dfrac{{{n_2} - {n_1}}}{R}$
Here, v is the distance of image formed.
Here ${n_2} = 1.33$ is the refractive index of the second medium and ${n_1} = - 1$ is the refractive index of the first medium.
We will now substitute the known values in the above equation.
$\begin{array}{l}
\dfrac{{1.33}}{v} - \dfrac{1}{{ - 40\;cm}} = \dfrac{{1.33 - 1}}{{ - 20\;cm}}\\
v = 32.05\;cm
\end{array}$
We know that the expression for magnification ratio is given by:
$\dfrac{v}{u} = \dfrac{H}{h}$
Here, H is the height of the image formed.
We will now substitute the given and obtained values.
$\begin{array}{l}
\Rightarrow \dfrac{{32.05\;cm}}{{40\;cm}} = \dfrac{H}{{1\;cm}}\\
\Rightarrow H = 0.6\;cm
\end{array}$
Therefore, the correct option is (B).
Additional information: Reflection from a concave mirror follows the laws of reflection. The normal to the point of incidence is drawn along the radius of the mirror, i.e., it is drawn by joining the centre of curvature with the point of incidence.
Note: The formation of an image that occurs in a concave mirror mainly depends on the distance between the object and the mirror. Both real and virtual images are formed by the concave mirror. When the object is placed very close to the mirror, a virtual and magnified image is formed.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025