
Find the slope of the straight line which is perpendicular to the straight line joining the points $\left( { - 2,6} \right){\text{ and }}\left( {4,8} \right)$ ?
$
\left( a \right){\text{ }}\dfrac{1}{3} \\
\left( b \right){\text{ 3}} \\
\left( c \right){\text{ - 3}} \\
\left( d \right){\text{ - }}\dfrac{1}{3} \\
$
Answer
222.6k+ views
Hint- Use the relation between the slopes of two lines which are perpendicular to each other which is \[{\text{slop}}{{\text{e}}_1} \times {\text{slop}}{{\text{e}}_2} = - 1\].
It’s given that we have to find the slope of a line which is perpendicular to a straight line joining the points\[\left( { - 2,6} \right){\text{ and }}\left( {4,8} \right)\].
Now the slope of any line passing through \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right){\text{ is }}\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]…………………… (1)
Thus using the equation 1 we have slope of line passing through \[\left( { - 2,6} \right){\text{ and }}\left( {4,8} \right)\]is
\[{{\text{m}}_1} = \dfrac{{8 - 6}}{{4 - \left( { - 2} \right)}} = \dfrac{2}{6}{\text{ = }}\dfrac{1}{3}\]
Now if two lines are perpendicular then their slope are related using the equation \[{\text{slop}}{{\text{e}}_1} \times {\text{slop}}{{\text{e}}_2} = - 1\]
Let us suppose the required slope is \[{{\text{m}}_2}\]so
\[{{\text{m}}_1} \times {m_2} = - 1\]
Putting value of \[{{\text{m}}_1}\]we get
\[\dfrac{1}{3} \times {m_2} = - 1\]
\[{m_2} = - 3\]
Hence option (c) is the right answer.
Note-Whenever two lines are perpendicular to each other than theirs slope are related as \[{{\text{m}}_1} \times {m_2} = - 1\]
We can easily find the slope of any line using 2 of its passing points via the concept of\[\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\].
It’s given that we have to find the slope of a line which is perpendicular to a straight line joining the points\[\left( { - 2,6} \right){\text{ and }}\left( {4,8} \right)\].
Now the slope of any line passing through \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right){\text{ is }}\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]…………………… (1)
Thus using the equation 1 we have slope of line passing through \[\left( { - 2,6} \right){\text{ and }}\left( {4,8} \right)\]is
\[{{\text{m}}_1} = \dfrac{{8 - 6}}{{4 - \left( { - 2} \right)}} = \dfrac{2}{6}{\text{ = }}\dfrac{1}{3}\]
Now if two lines are perpendicular then their slope are related using the equation \[{\text{slop}}{{\text{e}}_1} \times {\text{slop}}{{\text{e}}_2} = - 1\]
Let us suppose the required slope is \[{{\text{m}}_2}\]so
\[{{\text{m}}_1} \times {m_2} = - 1\]
Putting value of \[{{\text{m}}_1}\]we get
\[\dfrac{1}{3} \times {m_2} = - 1\]
\[{m_2} = - 3\]
Hence option (c) is the right answer.
Note-Whenever two lines are perpendicular to each other than theirs slope are related as \[{{\text{m}}_1} \times {m_2} = - 1\]
We can easily find the slope of any line using 2 of its passing points via the concept of\[\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\].
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

