
Find the sum \[2,3\dfrac{1}{4},4\dfrac{1}{2},\]…..To \[20\]terms.
Answer
232.8k+ views
Hint:-Here, this is a term of $AP$so we apply summation of $n$terms of$AP$.
Given series is\[2,3\dfrac{1}{4},4\dfrac{1}{2},\]…..Up to \[20\]terms.
The given series can be written as$\dfrac{8}{4},\dfrac{{13}}{4},\dfrac{{18}}{4}$,……to \[20\] terms.
Take $\dfrac{1}{4}$ common we get
$ \Rightarrow \dfrac{1}{4}(8 + 13 + 18 + ......)$ To \[20\] terms.
Observe that ${\text{8,13,18}}$…… is in Arithmetic Progression with first term $8$and$5$as common difference
So, the sum of first\[20\] terms in that series will be
$ = \dfrac{1}{4}\left( {\dfrac{{20}}{2}\left( {2 \times 8 + (20 - 1) \times 5} \right)} \right)$ $\because {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
Here $n = $ number of terms, $a = $ first term and $d = $ common difference.
${\text{ = }}\dfrac{1}{4}(1110) = \dfrac{{555}}{2}$ Answer.
Note: - Whenever such type of series is given first convert into simple form and then find which series is this. Then apply the formula of that series to get the answer.
Given series is\[2,3\dfrac{1}{4},4\dfrac{1}{2},\]…..Up to \[20\]terms.
The given series can be written as$\dfrac{8}{4},\dfrac{{13}}{4},\dfrac{{18}}{4}$,……to \[20\] terms.
Take $\dfrac{1}{4}$ common we get
$ \Rightarrow \dfrac{1}{4}(8 + 13 + 18 + ......)$ To \[20\] terms.
Observe that ${\text{8,13,18}}$…… is in Arithmetic Progression with first term $8$and$5$as common difference
So, the sum of first\[20\] terms in that series will be
$ = \dfrac{1}{4}\left( {\dfrac{{20}}{2}\left( {2 \times 8 + (20 - 1) \times 5} \right)} \right)$ $\because {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
Here $n = $ number of terms, $a = $ first term and $d = $ common difference.
${\text{ = }}\dfrac{1}{4}(1110) = \dfrac{{555}}{2}$ Answer.
Note: - Whenever such type of series is given first convert into simple form and then find which series is this. Then apply the formula of that series to get the answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

