
Find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
(a) 660
(b) 620
(c) 680
(d) 600
Answer
133.8k+ views
Hint: We start solving the problem by finding the general equation to represent each term of the series. After finding the general equation, we take summation of it up to n terms. Once we find the summation up to n terms, we substitute 10 in place in n and make required calculations to get the desired result.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \dfrac{\left( 2+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 4+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 6+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ .
$\Rightarrow \dfrac{\left( 2\left( 1 \right)+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 2\left( 2 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 2\left( 3 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ ---(1).
We can see that each term is of the form $\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}$ for $r=1,2,3,......n$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the cubes of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{3}}}=\dfrac{{{n}^{2}}\times {{\left( n+1 \right)}^{2}}}{4}$.
So, we get general term as \[\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( 2r+1 \right)\times \left( \dfrac{{{r}^{2}}\times {{\left( r+1 \right)}^{2}}}{4} \right)}{\left( \dfrac{r\times \left( r+1 \right)\times \left( 2r+1 \right)}{6} \right)}\].
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( \dfrac{r\times \left( r+1 \right)}{2} \right)}{\left( \dfrac{1}{3} \right)}$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( r\times \left( r+1 \right) \right)$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \sum\limits_{r=1}^{n}{{{r}^{2}}}+\sum\limits_{r=1}^{n}{r} \right)$ ---(2).
We know that sum of the squares of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$. We use these results in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\left( \dfrac{n\left( n+1 \right)}{2} \right) \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{2\times 2} \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}+1 \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+1+3}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+4}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2\left( n+2 \right)}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( n+2 \right)}{2} \right)\] ---(3).
Now we substitute 10 in place of n in equation (3).
So, we have \[\sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 10+1 \right)\times \left( 10+2 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 11 \right)\times \left( 12 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=10\times 11\times 6\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=660\].
We have found the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
∴ The sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
The correct option for the given problem is (a).
Note: We should the take the general equation to represent each term of series as $\dfrac{\left( 2r+1 \right).{{r}^{3}}}{{{r}^{2}}}$, because it will accommodate cube and square of only one number. Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \dfrac{\left( 2+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 4+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 6+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ .
$\Rightarrow \dfrac{\left( 2\left( 1 \right)+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 2\left( 2 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 2\left( 3 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ ---(1).
We can see that each term is of the form $\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}$ for $r=1,2,3,......n$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the cubes of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{3}}}=\dfrac{{{n}^{2}}\times {{\left( n+1 \right)}^{2}}}{4}$.
So, we get general term as \[\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( 2r+1 \right)\times \left( \dfrac{{{r}^{2}}\times {{\left( r+1 \right)}^{2}}}{4} \right)}{\left( \dfrac{r\times \left( r+1 \right)\times \left( 2r+1 \right)}{6} \right)}\].
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( \dfrac{r\times \left( r+1 \right)}{2} \right)}{\left( \dfrac{1}{3} \right)}$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( r\times \left( r+1 \right) \right)$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \sum\limits_{r=1}^{n}{{{r}^{2}}}+\sum\limits_{r=1}^{n}{r} \right)$ ---(2).
We know that sum of the squares of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$. We use these results in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\left( \dfrac{n\left( n+1 \right)}{2} \right) \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{2\times 2} \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}+1 \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+1+3}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+4}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2\left( n+2 \right)}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( n+2 \right)}{2} \right)\] ---(3).
Now we substitute 10 in place of n in equation (3).
So, we have \[\sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 10+1 \right)\times \left( 10+2 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 11 \right)\times \left( 12 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=10\times 11\times 6\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=660\].
We have found the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
∴ The sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
The correct option for the given problem is (a).
Note: We should the take the general equation to represent each term of series as $\dfrac{\left( 2r+1 \right).{{r}^{3}}}{{{r}^{2}}}$, because it will accommodate cube and square of only one number. Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
