Find the value of $\dfrac{{{d}^{25}}y}{d{{x}^{25}}}$, If $y={{x}^{2}}\sin x$.
Answer
Verified
116.4k+ views
Hint: The differentiation to be found can be found using the Leibnitz rule for differentiation. The Leibnitz rule for finding successive differentiation can be stated as the derivative of \[{{n}^{th}}\] order is given by the following rule:
If $y=u.v$ then $\frac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}$
Complete step-by-step solution -
Here We have to find $\dfrac{{{d}^{25}}y}{d{{x}^{25}}}$ .
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
${{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}$
or in Leibnitz's notation,
$\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}$
In different notation it can be written as,
$d(uv)=udv+vdu$
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
$\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}$
So we have to use the Leibnitz theorem,
${\displaystyle {\dfrac {d}{dx}}(u\cdot v)={\dfrac {du}{dx}}\cdot v+u\cdot {\dfrac {dv}{dx}}.} $So Leibnitz Theorem provides a useful formula for computing the ${{n}^{th}}$ derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the ${{n}^{th}}$ derivative of a product. The Leibnitz formula expresses the derivative on ${{n}^{th}}$ order of the product of two functions.
If $y=u.v$ then $\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}$ ……(1)
Now Let us consider $u={{x}^{2}}$ and $v=\sin x$ .
Here now differentiating $u$ for first derivative ${{u}_{1}}$ ,then second derivative ${{u}_{2}}$ and then third derivative ${{u}_{3}}$ .
So we get,
So ${{u}_{1}}=2x$, ${{u}_{2}}=2$,${{u}_{3}}=0$ …..(2)
Also differentiating for $v$ , For first , second, ${{n}^{th}}$ derivatives and ${{(n-1)}^{th}}$ derivatives,
So we get the derivatives as,
same for ${{v}_{1}}=\cos x=\sin \left( \dfrac{\pi }{2}+x \right)$ , ${{v}_{2}}=\cos \left( \dfrac{\pi }{2}+x \right)=\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2}+x \right)=\sin \left( \dfrac{2\pi }{2}+x \right)$ ,
So above I have made conversions don’t jumble in this conversions.
So at ${{v}_{n}}=\sin \left( \dfrac{n\pi }{2}+x \right)$ , ${{v}_{n-1}}=\sin \left( \dfrac{(n-1)\pi }{2}+x \right)$ , ${{v}_{n-2}}=\sin \left( \dfrac{(n-2)\pi }{2}+x \right)$ ………(3)
As we have find out the values of ${{u}_{1}},{{u}_{2}},{{u}_{3}}$ and ${{v}_{n}},{{v}_{n-1}},{{v}_{n-2}}$ ,
So substituting (2) and (3) in (1), that is substituting in formula of Leibnitz theorem,
So, We get,
$\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+{}^{n}{{c}_{1}}2x\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+{}^{n}{{c}_{2}}2\sin \left( \dfrac{(n-2)\pi }{2}+x \right)$
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+2nx\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+\dfrac{n(n-1)}{2}2\sin \left( \dfrac{(n-2)\pi }{2}+x \right)\]
So simplifying in simple manner, we get,
$\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+2nx\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+n(n-1)\sin \left( \dfrac{(n-2)\pi }{2}+x \right)$
In question it is mention $\dfrac{{{d}^{25}}y}{d{{x}^{25}}}$ that means we have to find it for $n=25$ ,
Here $n=25$ so substituting $n$ as $25$ ,
\[\begin{align}
& \dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{(25-1)\pi }{2}+x \right)+25(25-1)\sin \left( \dfrac{(25-2)\pi }{2}+x \right) \\
& \dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{24\pi }{2}+x \right)+600\sin \left( \dfrac{23\pi }{2}+x \right) \\
\end{align}\]
Hence we get the answer as,
$\dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{24\pi }{2}+x \right)+600\sin \left( \dfrac{23\pi }{2}+x \right)$
So again simplifying the answer we get,
$\sin \left( \dfrac{25\pi }{2}+x \right)=\cos x,\sin \left( \dfrac{24\pi }{2}+x \right)=\sin x,\sin \left( \dfrac{23\pi }{2}+x \right)=-\cos x$
So the final answer becomes,
$\dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\cos x+50x\sin x-600\cos x$
Note: Be careful while solving the Leibnitz theorem. While solving confusion occurs. Use the differentiation in the correct manner. Take care of the signs. Also take care while substituting $u$ and $v$.
Don’t make mistakes while differentiating $u$ and $v$ . Be clear with the conversion of $\sin $ to $\cos $ such as ${{v}_{1}}=\cos x=\sin \left( \dfrac{\pi }{2}+x \right)$ See here how it is done. Don’t confuse yourself.
If $y=u.v$ then $\frac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}$
Complete step-by-step solution -
Here We have to find $\dfrac{{{d}^{25}}y}{d{{x}^{25}}}$ .
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
${{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}$
or in Leibnitz's notation,
$\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}$
In different notation it can be written as,
$d(uv)=udv+vdu$
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
$\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}$
So we have to use the Leibnitz theorem,
${\displaystyle {\dfrac {d}{dx}}(u\cdot v)={\dfrac {du}{dx}}\cdot v+u\cdot {\dfrac {dv}{dx}}.} $So Leibnitz Theorem provides a useful formula for computing the ${{n}^{th}}$ derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the ${{n}^{th}}$ derivative of a product. The Leibnitz formula expresses the derivative on ${{n}^{th}}$ order of the product of two functions.
If $y=u.v$ then $\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}$ ……(1)
Now Let us consider $u={{x}^{2}}$ and $v=\sin x$ .
Here now differentiating $u$ for first derivative ${{u}_{1}}$ ,then second derivative ${{u}_{2}}$ and then third derivative ${{u}_{3}}$ .
So we get,
So ${{u}_{1}}=2x$, ${{u}_{2}}=2$,${{u}_{3}}=0$ …..(2)
Also differentiating for $v$ , For first , second, ${{n}^{th}}$ derivatives and ${{(n-1)}^{th}}$ derivatives,
So we get the derivatives as,
same for ${{v}_{1}}=\cos x=\sin \left( \dfrac{\pi }{2}+x \right)$ , ${{v}_{2}}=\cos \left( \dfrac{\pi }{2}+x \right)=\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2}+x \right)=\sin \left( \dfrac{2\pi }{2}+x \right)$ ,
So above I have made conversions don’t jumble in this conversions.
So at ${{v}_{n}}=\sin \left( \dfrac{n\pi }{2}+x \right)$ , ${{v}_{n-1}}=\sin \left( \dfrac{(n-1)\pi }{2}+x \right)$ , ${{v}_{n-2}}=\sin \left( \dfrac{(n-2)\pi }{2}+x \right)$ ………(3)
As we have find out the values of ${{u}_{1}},{{u}_{2}},{{u}_{3}}$ and ${{v}_{n}},{{v}_{n-1}},{{v}_{n-2}}$ ,
So substituting (2) and (3) in (1), that is substituting in formula of Leibnitz theorem,
So, We get,
$\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+{}^{n}{{c}_{1}}2x\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+{}^{n}{{c}_{2}}2\sin \left( \dfrac{(n-2)\pi }{2}+x \right)$
\[\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+2nx\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+\dfrac{n(n-1)}{2}2\sin \left( \dfrac{(n-2)\pi }{2}+x \right)\]
So simplifying in simple manner, we get,
$\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+2nx\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+n(n-1)\sin \left( \dfrac{(n-2)\pi }{2}+x \right)$
In question it is mention $\dfrac{{{d}^{25}}y}{d{{x}^{25}}}$ that means we have to find it for $n=25$ ,
Here $n=25$ so substituting $n$ as $25$ ,
\[\begin{align}
& \dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{(25-1)\pi }{2}+x \right)+25(25-1)\sin \left( \dfrac{(25-2)\pi }{2}+x \right) \\
& \dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{24\pi }{2}+x \right)+600\sin \left( \dfrac{23\pi }{2}+x \right) \\
\end{align}\]
Hence we get the answer as,
$\dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{24\pi }{2}+x \right)+600\sin \left( \dfrac{23\pi }{2}+x \right)$
So again simplifying the answer we get,
$\sin \left( \dfrac{25\pi }{2}+x \right)=\cos x,\sin \left( \dfrac{24\pi }{2}+x \right)=\sin x,\sin \left( \dfrac{23\pi }{2}+x \right)=-\cos x$
So the final answer becomes,
$\dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\cos x+50x\sin x-600\cos x$
Note: Be careful while solving the Leibnitz theorem. While solving confusion occurs. Use the differentiation in the correct manner. Take care of the signs. Also take care while substituting $u$ and $v$.
Don’t make mistakes while differentiating $u$ and $v$ . Be clear with the conversion of $\sin $ to $\cos $ such as ${{v}_{1}}=\cos x=\sin \left( \dfrac{\pi }{2}+x \right)$ See here how it is done. Don’t confuse yourself.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs