Find the value of k for the following question.
\[{{\sum\limits_{i=1}^{20}{\left( \dfrac{^{20}{{C}_{i-1}}}{^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}} \right)}}^{3}}=\dfrac{k}{21}\]
(a) 200
(b) 50
(c) 100
(d) 400
Answer
Verified
116.4k+ views
Hint: First, we use \[^{n}{{C}_{r}}+{{\text{ }}^{n}}{{C}_{r-1}}={{\text{ }}^{n+1}}{{C}_{r}}\] to simplify \[^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}\] to give us \[^{21}{{C}_{i}}.\] Then we will expand \[\dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}\] using the combination formula \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] to get the simplified value. At last, we will use \[{{\sum{{{n}^{3}}=\left[ \dfrac{n\left( n+1 \right)}{2} \right]}}^{2}}\] to get our final answer. Once we have our solution, we will compare it with \[\dfrac{k}{21}\] to get the value of k.
Complete step-by-step solution:
We are given that \[{{\sum\limits_{i=1}^{20}{\left( \dfrac{^{20}{{C}_{i-1}}}{^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}} \right)}}^{3}}=\dfrac{k}{21},\] we will find the value of k. We know a rule of combination which says the sum of \[^{n}{{C}_{r}}\] and \[^{n}{{C}_{r-1}}\] is given as \[^{n+1}{{C}_{r}}.\] That means,
\[^{n}{{C}_{r}}+{{\text{ }}^{n}}{{C}_{r-1}}={{\text{ }}^{n+1}}{{C}_{r}}\]
So, using this, we get,
\[^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}={{\text{ }}^{20+1}}{{C}_{i}}\]
\[{{\Rightarrow }^{20}}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}={{\text{ }}^{21}}{{C}_{i}}\]
Now, we have got, \[\dfrac{^{20}{{C}_{i-1}}}{^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}}\] as \[\dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}.\] Now, we will simplify \[\dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}.\] We know that \[^{n}{{C}_{r}}\] is given as \[\dfrac{n!}{r!\left( n-r \right)!},\] so,
\[\dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}=\dfrac{\dfrac{20!}{\left( i-1 \right)!\left( 20-i+1 \right)!}}{\dfrac{21!}{i!\left( 21-i \right)!}}\]
Simplifying, we get,
\[\Rightarrow \dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}=\dfrac{20!\times i!\times \left( 21-i \right)!}{21!\times \left( i-1 \right)!\times \left( 21-i \right)!}\]
Cancelling the like terms, we get,
\[\Rightarrow \dfrac{1}{21}\times i\]
\[\Rightarrow \dfrac{i}{21}\]
Now, we get
\[\Rightarrow {{\sum\limits_{i=1}^{20}{\left( \dfrac{^{20}{{C}_{i-1}}}{^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}} \right)}}^{3}}=\sum\limits_{i=1}^{20}{{{\left( \dfrac{i}{21} \right)}^{3}}\left[ \text{From (i)} \right]}\]
Takin \[{{\left( 21 \right)}^{3}}\] out, we get,
\[=\dfrac{1}{{{\left( 21 \right)}^{3}}}\sum\limits_{i=21}^{20}{{{\left( i \right)}^{3}}}\]
We know that, \[\sum\limits_{i=1}^{n}{{{\left( n \right)}^{3}}}={{\left[ \dfrac{n\left( n+1 \right)}{2} \right]}^{2}}\] so as n = 20, we get,
\[=\dfrac{1}{{{\left( 21 \right)}^{3}}}{{\left[ \dfrac{20\times \left( 20+1 \right)}{2} \right]}^{2}}\]
Simplifying further, we get,
\[=\dfrac{100}{21}\]
So comparing \[\dfrac{100}{21}\] with \[\dfrac{k}{21}\] we get k = 100.
Hence, the option (c) is the right answer.
Note: Remember that subtraction given to us is over i. So, we can easily take out the terms which are free from i. So, using this fact, we get,
\[\sum\limits_{i=1}^{20}{{{\left( \dfrac{i}{21} \right)}^{3}}=\dfrac{1}{{{\left( 21 \right)}^{3}}}\sum\limits_{i=1}^{20}{{{\left( i \right)}^{3}}}}\]
The formula of \[^{n}{{C}_{r}}\] is \[\dfrac{n!}{r!\left( n-r \right)!}.\] So, do not make mistake by taking \[^{n}{{C}_{r}}\] as \[\dfrac{n!}{\left( n-r \right)!}\] as it gives is the wrong solution.
Complete step-by-step solution:
We are given that \[{{\sum\limits_{i=1}^{20}{\left( \dfrac{^{20}{{C}_{i-1}}}{^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}} \right)}}^{3}}=\dfrac{k}{21},\] we will find the value of k. We know a rule of combination which says the sum of \[^{n}{{C}_{r}}\] and \[^{n}{{C}_{r-1}}\] is given as \[^{n+1}{{C}_{r}}.\] That means,
\[^{n}{{C}_{r}}+{{\text{ }}^{n}}{{C}_{r-1}}={{\text{ }}^{n+1}}{{C}_{r}}\]
So, using this, we get,
\[^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}={{\text{ }}^{20+1}}{{C}_{i}}\]
\[{{\Rightarrow }^{20}}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}={{\text{ }}^{21}}{{C}_{i}}\]
Now, we have got, \[\dfrac{^{20}{{C}_{i-1}}}{^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}}\] as \[\dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}.\] Now, we will simplify \[\dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}.\] We know that \[^{n}{{C}_{r}}\] is given as \[\dfrac{n!}{r!\left( n-r \right)!},\] so,
\[\dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}=\dfrac{\dfrac{20!}{\left( i-1 \right)!\left( 20-i+1 \right)!}}{\dfrac{21!}{i!\left( 21-i \right)!}}\]
Simplifying, we get,
\[\Rightarrow \dfrac{^{20}{{C}_{i-1}}}{^{21}{{C}_{i}}}=\dfrac{20!\times i!\times \left( 21-i \right)!}{21!\times \left( i-1 \right)!\times \left( 21-i \right)!}\]
Cancelling the like terms, we get,
\[\Rightarrow \dfrac{1}{21}\times i\]
\[\Rightarrow \dfrac{i}{21}\]
Now, we get
\[\Rightarrow {{\sum\limits_{i=1}^{20}{\left( \dfrac{^{20}{{C}_{i-1}}}{^{20}{{C}_{i}}+{{\text{ }}^{20}}{{C}_{i-1}}} \right)}}^{3}}=\sum\limits_{i=1}^{20}{{{\left( \dfrac{i}{21} \right)}^{3}}\left[ \text{From (i)} \right]}\]
Takin \[{{\left( 21 \right)}^{3}}\] out, we get,
\[=\dfrac{1}{{{\left( 21 \right)}^{3}}}\sum\limits_{i=21}^{20}{{{\left( i \right)}^{3}}}\]
We know that, \[\sum\limits_{i=1}^{n}{{{\left( n \right)}^{3}}}={{\left[ \dfrac{n\left( n+1 \right)}{2} \right]}^{2}}\] so as n = 20, we get,
\[=\dfrac{1}{{{\left( 21 \right)}^{3}}}{{\left[ \dfrac{20\times \left( 20+1 \right)}{2} \right]}^{2}}\]
Simplifying further, we get,
\[=\dfrac{100}{21}\]
So comparing \[\dfrac{100}{21}\] with \[\dfrac{k}{21}\] we get k = 100.
Hence, the option (c) is the right answer.
Note: Remember that subtraction given to us is over i. So, we can easily take out the terms which are free from i. So, using this fact, we get,
\[\sum\limits_{i=1}^{20}{{{\left( \dfrac{i}{21} \right)}^{3}}=\dfrac{1}{{{\left( 21 \right)}^{3}}}\sum\limits_{i=1}^{20}{{{\left( i \right)}^{3}}}}\]
The formula of \[^{n}{{C}_{r}}\] is \[\dfrac{n!}{r!\left( n-r \right)!}.\] So, do not make mistake by taking \[^{n}{{C}_{r}}\] as \[\dfrac{n!}{\left( n-r \right)!}\] as it gives is the wrong solution.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs