Answer
Verified
112.8k+ views
Hint: We will start by letting \[\sqrt x = \sin \theta \] and differentiate it. After this we will get the value of \[dx\] also. So, now we will substitute the values in the original expression given and the integral now becomes in terms of \[\sin \theta \]. While simplifying the integral, we will use the trigonometric identity \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] and \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\].
Complete step-by-step answer:
Consider the given integral \[I = \int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} }}} \].
We will start by substituting the value of \[\sqrt x \] as \[\sin \theta \].
Thus, we get,
\[\sqrt x = \sin \theta \]
Now, square root both the sides of the obtained expression, we get,
\[x = {\sin ^2}\theta \]
Now, differentiate the above expression, we get,
\[dx = 2\sin \theta \cos \theta d\theta \]
Now, substitute the obtained values in the given integral,
Thus, we get,
\[I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sqrt {{{\sin }^2}\theta - {{\sin }^4}\theta } }}} \]
In the denominator, we can take out \[{\sin ^2}\theta \] common from the square root term and take \[\sin \theta \] out from the respective term,
Thus, we get,
\[
\Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sqrt {{{\sin }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)} }}} \\
\Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \sqrt {1 - {{\sin }^2}\theta } }}} \\
\]
Now, we will use the trigonometric identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] which gives us the value of \[1 - {\sin ^2}\theta = {\cos ^2}\theta \].
Thus, we get,
\[
\Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \sqrt {{{\cos }^2}\theta } }}} \\
\Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \cos \theta }}} \\
\Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}}} \\
\]
Next, rationalize by multiplying the numerator and denominator with \[1 - \sin \theta \]. Thus, we get,
\[
\Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}} \times \dfrac{{1 - \sin \theta }}{{1 - \sin \theta }}} \\
\Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}}} \\
\]
Now, use the property, \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\] in the denominator.
\[
\Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}}} \\
\Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}} \times \dfrac{{1 - \sin \theta }}{{1 - \sin \theta }}} \\
\Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{1 - {{\sin }^2}\theta }}} \\
\]
Now, we will use the trigonometric identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] which gives us the value of \[1 - {\sin ^2}\theta = {\cos ^2}\theta \].
\[ \Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{{{\cos }^2}\theta }}} \]
Further, simplify the obtained expression,
Thus, we get,
\[ \Rightarrow I = 2\int {\dfrac{{d\theta }}{{{{\cos }^2}\theta }}} - 2\int {\dfrac{{\sin \theta d\theta }}{{{{\cos }^2}\theta }}} \]
We know that, \[\dfrac{1}{{{{\cos }^2}\theta }} = {\sec ^2}\theta \] and \[\dfrac{{\sin \theta }}{{\cos \theta }} \cdot \dfrac{1}{{\cos \theta }} = \tan \theta \cdot \sec \theta \], use this in the above expression,
Thus, we get,
\[ \Rightarrow I = 2\int {{{\sec }^2}\theta d\theta } - 2\int {\tan \theta \sec \theta d\theta } \]
Here, we know that the direct integral form of \[{\sec ^2}\theta \] is \[\int {{{\sec }^2}\theta d\theta } = \tan \theta \] and direct integral form of \[\tan \theta \sec \theta \] is \[\int {\tan \theta \sec \theta d\theta = \sec \theta } \].
Thus, directly apply it in the above integral, we get,
\[ \Rightarrow I = 2\tan \theta - 2\sec \theta + C\]
As we know that, \[\sin \theta = \sqrt x \]
We can easily find the value of \[\cos \theta \] by substituting in the identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Thus, we get,
\[
\Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } \\
\Rightarrow \cos \theta = \sqrt {1 - x} \\
\]
Using the values of \[\sin \theta = \sqrt x \] and \[\cos \theta = \sqrt {1 - x} \], we can find the value of \[\tan \theta \].
Thus, we get,
\[
\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} \\
= \dfrac{{\sqrt x }}{{\sqrt {1 - x} }} \\
\]
And
\[
\sec \theta = \dfrac{1}{{\cos \theta }} \\
= \dfrac{1}{{\sqrt {1 - x} }} \\
\]
Now, substitute the obtained values in the above integral, we get,
\[
\Rightarrow I = 2\dfrac{{\sqrt x }}{{\sqrt {1 - x} }} - 2\dfrac{1}{{\sqrt {1 - x} }} + C \\
\Rightarrow I = 2\left[ {\dfrac{{\sqrt x - 1}}{{\sqrt {1 - x} }}} \right] + C \\
\]
Thus, the value of the integral \[I = \int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} }}} \] is \[2\left( {\dfrac{{\sqrt x - 1}}{{\sqrt {1 - x} }}} \right) + C\]
Hence, option A is correct
Note: Remember to rationalize the expression with \[1 - \sin \theta \] at \[I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}}} \]. Use of trigonometric identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] is necessary at two or three places while doing the integration. Also, we have used the conversion of \[\tan \theta \] and \[\sec \theta \] in terms of \[\sin \theta \] and \[\cos \theta \]. It is necessary to remember the direct integral forms of some expressions like in this question we have used \[\int {{{\sec }^2}\theta d\theta } = \tan \theta \] and \[\int {\tan \theta \sec \theta d\theta = \sec \theta } \]. Many students forget to change the expression after integration into x. Keep that in mind after integration we need to take help from trigonometric identities to convert the expression into x as a variable.
Complete step-by-step answer:
Consider the given integral \[I = \int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} }}} \].
We will start by substituting the value of \[\sqrt x \] as \[\sin \theta \].
Thus, we get,
\[\sqrt x = \sin \theta \]
Now, square root both the sides of the obtained expression, we get,
\[x = {\sin ^2}\theta \]
Now, differentiate the above expression, we get,
\[dx = 2\sin \theta \cos \theta d\theta \]
Now, substitute the obtained values in the given integral,
Thus, we get,
\[I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sqrt {{{\sin }^2}\theta - {{\sin }^4}\theta } }}} \]
In the denominator, we can take out \[{\sin ^2}\theta \] common from the square root term and take \[\sin \theta \] out from the respective term,
Thus, we get,
\[
\Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sqrt {{{\sin }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)} }}} \\
\Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \sqrt {1 - {{\sin }^2}\theta } }}} \\
\]
Now, we will use the trigonometric identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] which gives us the value of \[1 - {\sin ^2}\theta = {\cos ^2}\theta \].
Thus, we get,
\[
\Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \sqrt {{{\cos }^2}\theta } }}} \\
\Rightarrow I = \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta \cos \theta }}} \\
\Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}}} \\
\]
Next, rationalize by multiplying the numerator and denominator with \[1 - \sin \theta \]. Thus, we get,
\[
\Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}} \times \dfrac{{1 - \sin \theta }}{{1 - \sin \theta }}} \\
\Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}}} \\
\]
Now, use the property, \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\] in the denominator.
\[
\Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}}} \\
\Rightarrow I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}} \times \dfrac{{1 - \sin \theta }}{{1 - \sin \theta }}} \\
\Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{1 - {{\sin }^2}\theta }}} \\
\]
Now, we will use the trigonometric identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] which gives us the value of \[1 - {\sin ^2}\theta = {\cos ^2}\theta \].
\[ \Rightarrow I = \int {\dfrac{{2\left( {1 - \sin \theta } \right)d\theta }}{{{{\cos }^2}\theta }}} \]
Further, simplify the obtained expression,
Thus, we get,
\[ \Rightarrow I = 2\int {\dfrac{{d\theta }}{{{{\cos }^2}\theta }}} - 2\int {\dfrac{{\sin \theta d\theta }}{{{{\cos }^2}\theta }}} \]
We know that, \[\dfrac{1}{{{{\cos }^2}\theta }} = {\sec ^2}\theta \] and \[\dfrac{{\sin \theta }}{{\cos \theta }} \cdot \dfrac{1}{{\cos \theta }} = \tan \theta \cdot \sec \theta \], use this in the above expression,
Thus, we get,
\[ \Rightarrow I = 2\int {{{\sec }^2}\theta d\theta } - 2\int {\tan \theta \sec \theta d\theta } \]
Here, we know that the direct integral form of \[{\sec ^2}\theta \] is \[\int {{{\sec }^2}\theta d\theta } = \tan \theta \] and direct integral form of \[\tan \theta \sec \theta \] is \[\int {\tan \theta \sec \theta d\theta = \sec \theta } \].
Thus, directly apply it in the above integral, we get,
\[ \Rightarrow I = 2\tan \theta - 2\sec \theta + C\]
As we know that, \[\sin \theta = \sqrt x \]
We can easily find the value of \[\cos \theta \] by substituting in the identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Thus, we get,
\[
\Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } \\
\Rightarrow \cos \theta = \sqrt {1 - x} \\
\]
Using the values of \[\sin \theta = \sqrt x \] and \[\cos \theta = \sqrt {1 - x} \], we can find the value of \[\tan \theta \].
Thus, we get,
\[
\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} \\
= \dfrac{{\sqrt x }}{{\sqrt {1 - x} }} \\
\]
And
\[
\sec \theta = \dfrac{1}{{\cos \theta }} \\
= \dfrac{1}{{\sqrt {1 - x} }} \\
\]
Now, substitute the obtained values in the above integral, we get,
\[
\Rightarrow I = 2\dfrac{{\sqrt x }}{{\sqrt {1 - x} }} - 2\dfrac{1}{{\sqrt {1 - x} }} + C \\
\Rightarrow I = 2\left[ {\dfrac{{\sqrt x - 1}}{{\sqrt {1 - x} }}} \right] + C \\
\]
Thus, the value of the integral \[I = \int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\sqrt {x - {x^2}} }}} \] is \[2\left( {\dfrac{{\sqrt x - 1}}{{\sqrt {1 - x} }}} \right) + C\]
Hence, option A is correct
Note: Remember to rationalize the expression with \[1 - \sin \theta \] at \[I = \int {\dfrac{{2d\theta }}{{\left( {1 + \sin \theta } \right)}}} \]. Use of trigonometric identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] is necessary at two or three places while doing the integration. Also, we have used the conversion of \[\tan \theta \] and \[\sec \theta \] in terms of \[\sin \theta \] and \[\cos \theta \]. It is necessary to remember the direct integral forms of some expressions like in this question we have used \[\int {{{\sec }^2}\theta d\theta } = \tan \theta \] and \[\int {\tan \theta \sec \theta d\theta = \sec \theta } \]. Many students forget to change the expression after integration into x. Keep that in mind after integration we need to take help from trigonometric identities to convert the expression into x as a variable.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations