
Find the value of x, if log2 = a, log3 = b , log7 = c and ${6^{\text{x}}} = {7^{{\text{x + 4}}}}$
$
{\text{A}}{\text{. }}\dfrac{{4{\text{b}}}}{{{\text{c + a - b}}}} \\
{\text{B}}{\text{. }}\dfrac{{4{\text{c}}}}{{{\text{a + b - c}}}} \\
{\text{C}}{\text{. }}\dfrac{{4{\text{b}}}}{{{\text{c - a - b}}}} \\
{\text{D}}{\text{. }}\dfrac{{4{\text{a}}}}{{{\text{a + b - c}}}} \\
$
Answer
216.6k+ views
Hint: Take log both sides of the equation ${6^{\text{x}}} = {7^{{\text{x + 4}}}}$ and use properties of logarithms.
Complete step-by-step answer:
Let,
log2 = a …………….(1)
log3 = b ……………..(2)
log7 = c ……………….(3)
${6^{\text{x}}} = {7^{{\text{x + 4}}}}$ ……………….(4)
As for any positive real number k, other than 1 such that ${{\text{k}}^{\text{m}}}{\text{ = x}}$ then , a logarithmic function can be defined as ${\text{m = lo}}{{\text{g}}_{\text{k}}}{\text{x}}$, where k is the base.
Now, in equation 4 we have, ${6^{\text{x}}}$ = ${7^{{\text{x + 4}}}}$ . On taking log both sides , we get
log(${6^{\text{x}}}$) = log(${7^{{\text{x + 4}}}}$)
Applying the property of logarithm which states ${\text{log(}}{{\text{a}}^{\text{n}}}) = {\text{nlog(a)}}$, we get
xlog6=(x+4)log7
$
{\text{xlog(3}} \times {\text{2) = xlog7 + 4log7}} \\
\\
$
Applying another property of logarithm which states ${\text{log(a}} \times {\text{b) = loga + logb}}$, we get
xlog3 + xlog2 – xlog7 = 4log7
Substituting the values of log2, log3 and log 7 from equation 1,2 and 3.
ax + bx – cx = 4c
x(a +b -c) = 4c
or, x = $\dfrac{{{\text{4c}}}}{{{\text{a + b - c}}}}$.
Answer is option (b).
Note: In these types of questions, the key concept is to remember the properties of logarithm. The logarithm question requires only two steps. Step 1 is to convert the equation into logarithmic form. Step 2, is apply the properties of logarithm and simplify it to the end.
Complete step-by-step answer:
Let,
log2 = a …………….(1)
log3 = b ……………..(2)
log7 = c ……………….(3)
${6^{\text{x}}} = {7^{{\text{x + 4}}}}$ ……………….(4)
As for any positive real number k, other than 1 such that ${{\text{k}}^{\text{m}}}{\text{ = x}}$ then , a logarithmic function can be defined as ${\text{m = lo}}{{\text{g}}_{\text{k}}}{\text{x}}$, where k is the base.
Now, in equation 4 we have, ${6^{\text{x}}}$ = ${7^{{\text{x + 4}}}}$ . On taking log both sides , we get
log(${6^{\text{x}}}$) = log(${7^{{\text{x + 4}}}}$)
Applying the property of logarithm which states ${\text{log(}}{{\text{a}}^{\text{n}}}) = {\text{nlog(a)}}$, we get
xlog6=(x+4)log7
$
{\text{xlog(3}} \times {\text{2) = xlog7 + 4log7}} \\
\\
$
Applying another property of logarithm which states ${\text{log(a}} \times {\text{b) = loga + logb}}$, we get
xlog3 + xlog2 – xlog7 = 4log7
Substituting the values of log2, log3 and log 7 from equation 1,2 and 3.
ax + bx – cx = 4c
x(a +b -c) = 4c
or, x = $\dfrac{{{\text{4c}}}}{{{\text{a + b - c}}}}$.
Answer is option (b).
Note: In these types of questions, the key concept is to remember the properties of logarithm. The logarithm question requires only two steps. Step 1 is to convert the equation into logarithmic form. Step 2, is apply the properties of logarithm and simplify it to the end.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

