
For the reaction, $A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$, the n-factor is:
(A) 11
(B) 28
(C) 61
(D) 5/3
Answer
140.4k+ views
Hint: First break $A{s_2}{S_3}$ into its constituent atoms and see their individual oxidation states. Then see the oxidation states of the products obtained and count the total number of electrons lost or gained. These lost or gained electrons form the n-factor of the reaction.
Complete step by step answer:
-The given reaction is the oxidation reaction of $A{s_2}{S_3}$. First let us see the complete reaction:
$A{s_2}{S_3} \to 2As{O_4}^{ - 3} + 3S{O_4}^{ - 2}$
Here in $As{O_4}^{ - 3}$ the oxidation state of As is (+5). So, in short this reaction can also be written as:
$A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$
Balanced reaction is: $A{s_2}{S_3} \to 2A{s^{ + 5}} + 3S{O_4}^{ - 2}$
-Now let us break the compound $A{s_2}{S_3}$ into 2 parts and see the oxidation states of As and S individually.
So, $A{s_2}{S_3}$ can also be written as a combination of $A{s_2}^{ + 6}$ and ${S_3}^{ - 6}$.
-Talking about $A{s_2}^{ + 6}$ we know that for 1 As atom the oxidation state was (+3) and so for 2 As atoms the oxidation state is (+6).
In $2A{s^{ + 5}}$ also the oxidation state of 1 As atom was (+5) but for 2 As atoms it is (+10).
After oxidation $A{s_2}^{ + 6}$ was converted into $2A{s^{ + 5}}$. We can also say that the oxidation state changed from (+6) to (+10). This means that there was a loss of 4 electrons.
This can be written in the form of reaction also:
$A{s_2}^{ + 6} \to 2A{s^{ + 5}} + 4{e^ - }$
-Now let’s talk about${S_3}^{ - 6}$. Here we know that the oxidation state of 1 S atom is (-2) and that for 3 S atoms is (-6).
In $3S{O_4}^{ - 2}$ the oxidation state of 1 S atom is (+6) and that of 3 S atoms is (+18).
After oxidation ${S_3}^{ - 6}$ was converted to $3S{O_4}^{ - 2}$. We can also say that its oxidation state changed from (-6) to (+18). This means that there was a loss of 24 electrons.
This can be written in the form of reaction also:
${S_3}^{ - 6} \to 3S{O_4}^{ - 2} + 24{e^ - }$
-The n-factor of the reaction is calculated by adding the total no of electrons lost which is:
= 4 + 24
= 28 electrons
So, the n-factor of the reaction is 28.
The correct option is: (B) 28.
Note: While calculating the oxidation states always check whether that state is for 1 atom or more atoms. Also check whether in that reaction those electrons are being lost or gained, that is that element is being reduced or oxidised.
Complete step by step answer:
-The given reaction is the oxidation reaction of $A{s_2}{S_3}$. First let us see the complete reaction:
$A{s_2}{S_3} \to 2As{O_4}^{ - 3} + 3S{O_4}^{ - 2}$
Here in $As{O_4}^{ - 3}$ the oxidation state of As is (+5). So, in short this reaction can also be written as:
$A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$
Balanced reaction is: $A{s_2}{S_3} \to 2A{s^{ + 5}} + 3S{O_4}^{ - 2}$
-Now let us break the compound $A{s_2}{S_3}$ into 2 parts and see the oxidation states of As and S individually.
So, $A{s_2}{S_3}$ can also be written as a combination of $A{s_2}^{ + 6}$ and ${S_3}^{ - 6}$.
-Talking about $A{s_2}^{ + 6}$ we know that for 1 As atom the oxidation state was (+3) and so for 2 As atoms the oxidation state is (+6).
In $2A{s^{ + 5}}$ also the oxidation state of 1 As atom was (+5) but for 2 As atoms it is (+10).
After oxidation $A{s_2}^{ + 6}$ was converted into $2A{s^{ + 5}}$. We can also say that the oxidation state changed from (+6) to (+10). This means that there was a loss of 4 electrons.
This can be written in the form of reaction also:
$A{s_2}^{ + 6} \to 2A{s^{ + 5}} + 4{e^ - }$
-Now let’s talk about${S_3}^{ - 6}$. Here we know that the oxidation state of 1 S atom is (-2) and that for 3 S atoms is (-6).
In $3S{O_4}^{ - 2}$ the oxidation state of 1 S atom is (+6) and that of 3 S atoms is (+18).
After oxidation ${S_3}^{ - 6}$ was converted to $3S{O_4}^{ - 2}$. We can also say that its oxidation state changed from (-6) to (+18). This means that there was a loss of 24 electrons.
This can be written in the form of reaction also:
${S_3}^{ - 6} \to 3S{O_4}^{ - 2} + 24{e^ - }$
-The n-factor of the reaction is calculated by adding the total no of electrons lost which is:
= 4 + 24
= 28 electrons
So, the n-factor of the reaction is 28.
The correct option is: (B) 28.
Note: While calculating the oxidation states always check whether that state is for 1 atom or more atoms. Also check whether in that reaction those electrons are being lost or gained, that is that element is being reduced or oxidised.
Recently Updated Pages
Types of Solutions - Solution in Chemistry

Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Thermodynamics Class 11 Notes: CBSE Chapter 5
