For the reaction, $A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$, the n-factor is:
(A) 11
(B) 28
(C) 61
(D) 5/3
Answer
Verified
116.4k+ views
Hint: First break $A{s_2}{S_3}$ into its constituent atoms and see their individual oxidation states. Then see the oxidation states of the products obtained and count the total number of electrons lost or gained. These lost or gained electrons form the n-factor of the reaction.
Complete step by step answer:
-The given reaction is the oxidation reaction of $A{s_2}{S_3}$. First let us see the complete reaction:
$A{s_2}{S_3} \to 2As{O_4}^{ - 3} + 3S{O_4}^{ - 2}$
Here in $As{O_4}^{ - 3}$ the oxidation state of As is (+5). So, in short this reaction can also be written as:
$A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$
Balanced reaction is: $A{s_2}{S_3} \to 2A{s^{ + 5}} + 3S{O_4}^{ - 2}$
-Now let us break the compound $A{s_2}{S_3}$ into 2 parts and see the oxidation states of As and S individually.
So, $A{s_2}{S_3}$ can also be written as a combination of $A{s_2}^{ + 6}$ and ${S_3}^{ - 6}$.
-Talking about $A{s_2}^{ + 6}$ we know that for 1 As atom the oxidation state was (+3) and so for 2 As atoms the oxidation state is (+6).
In $2A{s^{ + 5}}$ also the oxidation state of 1 As atom was (+5) but for 2 As atoms it is (+10).
After oxidation $A{s_2}^{ + 6}$ was converted into $2A{s^{ + 5}}$. We can also say that the oxidation state changed from (+6) to (+10). This means that there was a loss of 4 electrons.
This can be written in the form of reaction also:
$A{s_2}^{ + 6} \to 2A{s^{ + 5}} + 4{e^ - }$
-Now let’s talk about${S_3}^{ - 6}$. Here we know that the oxidation state of 1 S atom is (-2) and that for 3 S atoms is (-6).
In $3S{O_4}^{ - 2}$ the oxidation state of 1 S atom is (+6) and that of 3 S atoms is (+18).
After oxidation ${S_3}^{ - 6}$ was converted to $3S{O_4}^{ - 2}$. We can also say that its oxidation state changed from (-6) to (+18). This means that there was a loss of 24 electrons.
This can be written in the form of reaction also:
${S_3}^{ - 6} \to 3S{O_4}^{ - 2} + 24{e^ - }$
-The n-factor of the reaction is calculated by adding the total no of electrons lost which is:
= 4 + 24
= 28 electrons
So, the n-factor of the reaction is 28.
The correct option is: (B) 28.
Note: While calculating the oxidation states always check whether that state is for 1 atom or more atoms. Also check whether in that reaction those electrons are being lost or gained, that is that element is being reduced or oxidised.
Complete step by step answer:
-The given reaction is the oxidation reaction of $A{s_2}{S_3}$. First let us see the complete reaction:
$A{s_2}{S_3} \to 2As{O_4}^{ - 3} + 3S{O_4}^{ - 2}$
Here in $As{O_4}^{ - 3}$ the oxidation state of As is (+5). So, in short this reaction can also be written as:
$A{s_2}{S_3} \to A{s^{ + 5}} + S{O_4}^{ - 2}$
Balanced reaction is: $A{s_2}{S_3} \to 2A{s^{ + 5}} + 3S{O_4}^{ - 2}$
-Now let us break the compound $A{s_2}{S_3}$ into 2 parts and see the oxidation states of As and S individually.
So, $A{s_2}{S_3}$ can also be written as a combination of $A{s_2}^{ + 6}$ and ${S_3}^{ - 6}$.
-Talking about $A{s_2}^{ + 6}$ we know that for 1 As atom the oxidation state was (+3) and so for 2 As atoms the oxidation state is (+6).
In $2A{s^{ + 5}}$ also the oxidation state of 1 As atom was (+5) but for 2 As atoms it is (+10).
After oxidation $A{s_2}^{ + 6}$ was converted into $2A{s^{ + 5}}$. We can also say that the oxidation state changed from (+6) to (+10). This means that there was a loss of 4 electrons.
This can be written in the form of reaction also:
$A{s_2}^{ + 6} \to 2A{s^{ + 5}} + 4{e^ - }$
-Now let’s talk about${S_3}^{ - 6}$. Here we know that the oxidation state of 1 S atom is (-2) and that for 3 S atoms is (-6).
In $3S{O_4}^{ - 2}$ the oxidation state of 1 S atom is (+6) and that of 3 S atoms is (+18).
After oxidation ${S_3}^{ - 6}$ was converted to $3S{O_4}^{ - 2}$. We can also say that its oxidation state changed from (-6) to (+18). This means that there was a loss of 24 electrons.
This can be written in the form of reaction also:
${S_3}^{ - 6} \to 3S{O_4}^{ - 2} + 24{e^ - }$
-The n-factor of the reaction is calculated by adding the total no of electrons lost which is:
= 4 + 24
= 28 electrons
So, the n-factor of the reaction is 28.
The correct option is: (B) 28.
Note: While calculating the oxidation states always check whether that state is for 1 atom or more atoms. Also check whether in that reaction those electrons are being lost or gained, that is that element is being reduced or oxidised.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
JEE Main Results 2025: Updates, Toppers, Scorecard, and Cut-Offs