
If a linear inequality in complex number a+ib < c+id is meaningful if
A). $$a^{2}+b^{2}=0$$
B). $$b^{2}+c^{2}=0$$
C). $$a^{2}+c^{2}=0$$
D). $$b^{2}+d^{2}=0$$
Answer
217.2k+ views
Hint: In this question it is given that we have to find the condition for which the given condition a+ib < c+id is meaningful. So to find the solution we need to know any two complex numbers cannot be compared as there is no such concept. So by using this concept we have to solve the problem.
Complete step-by-step solution:
Here the given condition is a+ib < c+id.
As we know that Imaginary numbers cannot be compared.
So the condition a+ib < c+id to be meaningful, if and only if they are real numbers. Which is possible when their imaginary parts are zero.
i.e. b and d must be zero, b=0, d=0.
Therefore we can say that $$b^{2}+d^{2}=0$$.
Hence the correct option is option D.
Note: While solving this type of question you need to know that complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation $$i^{2}$$ = −1. Because no real number satisfies this equation, it is called an imaginary number. For the complex number a + bi, a is called the real part, and b is called the imaginary part. Also we can compare two complex numbers for equality. That is, we can assert or question if two complex numbers $$z_{1},z_{2}$$ are equal, i.e, $$z_{1}= z_{2}$$.
But there isn’t an ordering on complex numbers which follows all the rules we would expect of an ordering. So we can’t say $$z_{1} >z_{2}$$, $$z_{1} < z_{2}$$ or $$z_{1}\leq z_{2}$$ in sensible manner.
Complete step-by-step solution:
Here the given condition is a+ib < c+id.
As we know that Imaginary numbers cannot be compared.
So the condition a+ib < c+id to be meaningful, if and only if they are real numbers. Which is possible when their imaginary parts are zero.
i.e. b and d must be zero, b=0, d=0.
Therefore we can say that $$b^{2}+d^{2}=0$$.
Hence the correct option is option D.
Note: While solving this type of question you need to know that complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation $$i^{2}$$ = −1. Because no real number satisfies this equation, it is called an imaginary number. For the complex number a + bi, a is called the real part, and b is called the imaginary part. Also we can compare two complex numbers for equality. That is, we can assert or question if two complex numbers $$z_{1},z_{2}$$ are equal, i.e, $$z_{1}= z_{2}$$.
But there isn’t an ordering on complex numbers which follows all the rules we would expect of an ordering. So we can’t say $$z_{1} >z_{2}$$, $$z_{1} < z_{2}$$ or $$z_{1}\leq z_{2}$$ in sensible manner.
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

