Answer
Verified
99.9k+ views
Hint The above problem is based on the concept of the magnetic field. The magnetic field is the region around the current carrying conductor in which the other particles experience the effect of the magnetic force of the conductor. The strength of the magnetic field is also the same as the number of field lines at a point in the region.
Complete step by step answer
The formula for strength of the magnetic field is given as:
$B = \dfrac{{{\mu _0}I}}{{2\pi d}}$
Here, d is the distance of the point from the axis of the conductor, I is the current conductor.
From the above formula it can be said that the strength of the magnetic field depends on the current in the conductor and the distance of the point from the point.
The strength of the magnetic field is proportional to the current in the coil. If the current in the coil decreases then the strength of the magnetic field decreases.
Thus, the strength of magnetic field decreases on decrease in the current in the coil and the
option (A) is the correct answer.
Additional Information
The strength of the magnetic field is inversely proportional to the distance of the particle from the axis of the conductor, so the strength of the magnetic field can also decrease with increase in the distance between the conductor and particle.
Note The strength of the magnetic field also depends on the geometry of the conductor. The direction of the magnetic field also depends on the direction of the current in the conductor. The magnetic field is a vector quantity.
Complete step by step answer
The formula for strength of the magnetic field is given as:
$B = \dfrac{{{\mu _0}I}}{{2\pi d}}$
Here, d is the distance of the point from the axis of the conductor, I is the current conductor.
From the above formula it can be said that the strength of the magnetic field depends on the current in the conductor and the distance of the point from the point.
The strength of the magnetic field is proportional to the current in the coil. If the current in the coil decreases then the strength of the magnetic field decreases.
Thus, the strength of magnetic field decreases on decrease in the current in the coil and the
option (A) is the correct answer.
Additional Information
The strength of the magnetic field is inversely proportional to the distance of the particle from the axis of the conductor, so the strength of the magnetic field can also decrease with increase in the distance between the conductor and particle.
Note The strength of the magnetic field also depends on the geometry of the conductor. The direction of the magnetic field also depends on the direction of the current in the conductor. The magnetic field is a vector quantity.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main