
If current in the coil decreases, the strength of magnetic field
A. decreases
B. increases
C. sometimes decreases and sometimes increases
D. remains unchanged
Answer
128.1k+ views
Hint The above problem is based on the concept of the magnetic field. The magnetic field is the region around the current carrying conductor in which the other particles experience the effect of the magnetic force of the conductor. The strength of the magnetic field is also the same as the number of field lines at a point in the region.
Complete step by step answer
The formula for strength of the magnetic field is given as:
$B = \dfrac{{{\mu _0}I}}{{2\pi d}}$
Here, d is the distance of the point from the axis of the conductor, I is the current conductor.
From the above formula it can be said that the strength of the magnetic field depends on the current in the conductor and the distance of the point from the point.
The strength of the magnetic field is proportional to the current in the coil. If the current in the coil decreases then the strength of the magnetic field decreases.
Thus, the strength of magnetic field decreases on decrease in the current in the coil and the
option (A) is the correct answer.
Additional Information
The strength of the magnetic field is inversely proportional to the distance of the particle from the axis of the conductor, so the strength of the magnetic field can also decrease with increase in the distance between the conductor and particle.
Note The strength of the magnetic field also depends on the geometry of the conductor. The direction of the magnetic field also depends on the direction of the current in the conductor. The magnetic field is a vector quantity.
Complete step by step answer
The formula for strength of the magnetic field is given as:
$B = \dfrac{{{\mu _0}I}}{{2\pi d}}$
Here, d is the distance of the point from the axis of the conductor, I is the current conductor.
From the above formula it can be said that the strength of the magnetic field depends on the current in the conductor and the distance of the point from the point.
The strength of the magnetic field is proportional to the current in the coil. If the current in the coil decreases then the strength of the magnetic field decreases.
Thus, the strength of magnetic field decreases on decrease in the current in the coil and the
option (A) is the correct answer.
Additional Information
The strength of the magnetic field is inversely proportional to the distance of the particle from the axis of the conductor, so the strength of the magnetic field can also decrease with increase in the distance between the conductor and particle.
Note The strength of the magnetic field also depends on the geometry of the conductor. The direction of the magnetic field also depends on the direction of the current in the conductor. The magnetic field is a vector quantity.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Diffraction of Light - Young’s Single Slit Experiment
