
If current in the coil decreases, the strength of magnetic field
A. decreases
B. increases
C. sometimes decreases and sometimes increases
D. remains unchanged
Answer
143.1k+ views
Hint The above problem is based on the concept of the magnetic field. The magnetic field is the region around the current carrying conductor in which the other particles experience the effect of the magnetic force of the conductor. The strength of the magnetic field is also the same as the number of field lines at a point in the region.
Complete step by step answer
The formula for strength of the magnetic field is given as:
Here, d is the distance of the point from the axis of the conductor, I is the current conductor.
From the above formula it can be said that the strength of the magnetic field depends on the current in the conductor and the distance of the point from the point.
The strength of the magnetic field is proportional to the current in the coil. If the current in the coil decreases then the strength of the magnetic field decreases.
Thus, the strength of magnetic field decreases on decrease in the current in the coil and the
option (A) is the correct answer.
Additional Information
The strength of the magnetic field is inversely proportional to the distance of the particle from the axis of the conductor, so the strength of the magnetic field can also decrease with increase in the distance between the conductor and particle.
Note The strength of the magnetic field also depends on the geometry of the conductor. The direction of the magnetic field also depends on the direction of the current in the conductor. The magnetic field is a vector quantity.
Complete step by step answer
The formula for strength of the magnetic field is given as:
Here, d is the distance of the point from the axis of the conductor, I is the current conductor.
From the above formula it can be said that the strength of the magnetic field depends on the current in the conductor and the distance of the point from the point.
The strength of the magnetic field is proportional to the current in the coil. If the current in the coil decreases then the strength of the magnetic field decreases.
Thus, the strength of magnetic field decreases on decrease in the current in the coil and the
option (A) is the correct answer.
Additional Information
The strength of the magnetic field is inversely proportional to the distance of the particle from the axis of the conductor, so the strength of the magnetic field can also decrease with increase in the distance between the conductor and particle.
Note The strength of the magnetic field also depends on the geometry of the conductor. The direction of the magnetic field also depends on the direction of the current in the conductor. The magnetic field is a vector quantity.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹33,300 per year
EMI starts from ₹2,775 per month
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electrical Field of Charged Spherical Shell - JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic

Charging and Discharging of Capacitor

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

The perfect formula used for calculating induced emf class 12 physics JEE_Main

Introduction to Dimensions With Different Units and Formula for JEE

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

A Zener diode having breakdown voltage equal to 15V class 12 physics JEE_Main
