
If four points $A(6,3),B( - 3,5),C(4, - 2)$ and $D(x,3x)$ are given in such a way , then find the value of x.
A.$\dfrac{3}{8}$ or$ - \dfrac{{14}}{8}$
B.2 or -3
C. $\dfrac{{11}}{8}$ or$ - \dfrac{3}{8}$
D. None of these
Answer
232.8k+ views
Hint: First write the formula of the area of a triangle, then substitute the given coordinates in the formula to obtain the area of the triangle DBC and triangle ABC. Then Substitute the obtained areas in the given equation to obtain the value of x.
Formula Used:
Area=$\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$ , where $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ are the vertices of the triangle.
Complete step by step solution:
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(6,3),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\dfrac{1}{2}\left[ {6\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3) + 4(3 - 5)} \right]$
$ = \dfrac{1}{2}\left[ {42 + 15 - 8} \right]$
$ = \dfrac{{49}}{2}$
So, the area of the triangle ABC is $\dfrac{{49}}{2}.$
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(x,3x),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\left| {\dfrac{1}{2}\left[ {x\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3x) + 4(3x - 5)} \right]} \right|$ , taking modulus as an area is always positive.
$ = \left| {\dfrac{1}{2}\left[ {7x + 6 + 9x + 12x - 20} \right]} \right|$
$ = \left| {\dfrac{1}{2}\left[ {28x - 14} \right]} \right|$
$ = \left| {14x - 7} \right|$
So, the area of the triangle DBC is $\left| {14x - 7} \right|$.
Substitute $\dfrac{{49}}{2}$for area of the triangle ABC and $\left| {14x - 7} \right|$ for the area of the triangle DBC in the equation to obtain the value of x.
Hence,
$\dfrac{{\left| {14x - 7} \right|}}{{\dfrac{{49}}{2}}} = \dfrac{1}{2}$
$\dfrac{{2(\left| {14x - 7} \right|)}}{{49}} = \dfrac{1}{2}$
$4(\left| {14x - 7} \right|) = 49$
$14x - 7 = \pm \dfrac{{49}}{4}$
Now, take the positive sign,
$14x - 7 = \dfrac{{49}}{4}$
$14x = \dfrac{{49}}{4} + 7$
$x = \dfrac{{77}}{{56}}$
That is, $x = \dfrac{{11}}{8}$ .
Take the negative sign,
$14x - 7 = - \dfrac{{49}}{4}$
$14x = - \dfrac{{49}}{4} + 7$
$x = \dfrac{{ - 21}}{{56}}$
That is, $x = \dfrac{{ - 3}}{8}$
Option ‘C’ is correct
Note: Students often skip the calculation step of showing the areas of the triangle and directly mention the areas doing the calculation in the roughwork, but that is not correct, we need to show the full calculation in the main answer sheet to avoid any type of mistake. They also sometimes forget to take the modulus and deal with only the positive value but as x is unknown so we need to take the modulus sign to calculate the positive as well as the negative value.
Formula Used:
Area=$\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$ , where $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ are the vertices of the triangle.
Complete step by step solution:
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(6,3),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\dfrac{1}{2}\left[ {6\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3) + 4(3 - 5)} \right]$
$ = \dfrac{1}{2}\left[ {42 + 15 - 8} \right]$
$ = \dfrac{{49}}{2}$
So, the area of the triangle ABC is $\dfrac{{49}}{2}.$
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(x,3x),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\left| {\dfrac{1}{2}\left[ {x\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3x) + 4(3x - 5)} \right]} \right|$ , taking modulus as an area is always positive.
$ = \left| {\dfrac{1}{2}\left[ {7x + 6 + 9x + 12x - 20} \right]} \right|$
$ = \left| {\dfrac{1}{2}\left[ {28x - 14} \right]} \right|$
$ = \left| {14x - 7} \right|$
So, the area of the triangle DBC is $\left| {14x - 7} \right|$.
Substitute $\dfrac{{49}}{2}$for area of the triangle ABC and $\left| {14x - 7} \right|$ for the area of the triangle DBC in the equation to obtain the value of x.
Hence,
$\dfrac{{\left| {14x - 7} \right|}}{{\dfrac{{49}}{2}}} = \dfrac{1}{2}$
$\dfrac{{2(\left| {14x - 7} \right|)}}{{49}} = \dfrac{1}{2}$
$4(\left| {14x - 7} \right|) = 49$
$14x - 7 = \pm \dfrac{{49}}{4}$
Now, take the positive sign,
$14x - 7 = \dfrac{{49}}{4}$
$14x = \dfrac{{49}}{4} + 7$
$x = \dfrac{{77}}{{56}}$
That is, $x = \dfrac{{11}}{8}$ .
Take the negative sign,
$14x - 7 = - \dfrac{{49}}{4}$
$14x = - \dfrac{{49}}{4} + 7$
$x = \dfrac{{ - 21}}{{56}}$
That is, $x = \dfrac{{ - 3}}{8}$
Option ‘C’ is correct
Note: Students often skip the calculation step of showing the areas of the triangle and directly mention the areas doing the calculation in the roughwork, but that is not correct, we need to show the full calculation in the main answer sheet to avoid any type of mistake. They also sometimes forget to take the modulus and deal with only the positive value but as x is unknown so we need to take the modulus sign to calculate the positive as well as the negative value.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

JEE Main 2026 January 21 Shift 2 Question Papers and Analysis OUT Check Student Reactions

JEE Main 2026 Dress Code for Male & Female Candidates

JEE Main 2025 24 Jan Shift 2 Question Paper with Solutions

JEE Main 2026 Exam Day: Guidelines, Dress Code & Important Documents

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

CBSE Class 10 Maths Set 1 2025 Question Paper & Solutions

CBSE Class 10 Maths Question Paper Set 2 430/1/2 2025 (Basic): PDF, Answers & Analysis

Surface Areas and Volumes Class 10 Maths Chapter 12 CBSE Notes - 2025-26

CBSE Class 10 Maths Question Paper Set 1 (Basic) 430/5/1 – 2025 with Answers

CBSE Class 10 Maths Set 1 2025 Question Paper (Standard)

